PAPI: Exploiting Dynamic Parallelism in Large Language Model Decoding with a Processing-In-Memory-Enabled Computing System
- URL: http://arxiv.org/abs/2502.15470v2
- Date: Thu, 27 Feb 2025 07:03:36 GMT
- Title: PAPI: Exploiting Dynamic Parallelism in Large Language Model Decoding with a Processing-In-Memory-Enabled Computing System
- Authors: Yintao He, Haiyu Mao, Christina Giannoula, Mohammad Sadrosadati, Juan Gómez-Luna, Huawei Li, Xiaowei Li, Ying Wang, Onur Mutlu,
- Abstract summary: We propose PAPI, a PIM-enabled heterogeneous architecture that exploits dynamic scheduling of compute-bound or memory-bound kernels to suitable hardware units.<n>PAPI achieves 1.8$times$ and 11.1$times$ speed over a state-of-the-art heterogeneous accelerator and a state-of-the-art PIM-only accelerator.
- Score: 13.678531084541666
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) are widely used for natural language understanding and text generation. An LLM model relies on a time-consuming step called LLM decoding to generate output tokens. Several prior works focus on improving the performance of LLM decoding using parallelism techniques, such as batching and speculative decoding. State-of-the-art LLM decoding has both compute-bound and memory-bound kernels. Some prior works statically identify and map these different kernels to a heterogeneous architecture consisting of both processing-in-memory (PIM) units and computation-centric accelerators. We observe that characteristics of LLM decoding kernels (e.g., whether or not a kernel is memory-bound) can change dynamically due to parameter changes to meet user and/or system demands, making (1) static kernel mapping to PIM units and computation-centric accelerators suboptimal, and (2) one-size-fits-all approach of designing PIM units inefficient due to a large degree of heterogeneity even in memory-bound kernels. In this paper, we aim to accelerate LLM decoding while considering the dynamically changing characteristics of the kernels involved. We propose PAPI (PArallel Decoding with PIM), a PIM-enabled heterogeneous architecture that exploits dynamic scheduling of compute-bound or memory-bound kernels to suitable hardware units. PAPI has two key mechanisms: (1) online kernel characterization to dynamically schedule kernels to the most suitable hardware units at runtime and (2) a PIM-enabled heterogeneous computing system that harmoniously orchestrates both computation-centric processing units and hybrid PIM units with different computing capabilities. Our experimental results on three broadly-used LLMs show that PAPI achieves 1.8$\times$ and 11.1$\times$ speedups over a state-of-the-art heterogeneous LLM accelerator and a state-of-the-art PIM-only LLM accelerator, respectively.
Related papers
- L3: DIMM-PIM Integrated Architecture and Coordination for Scalable Long-Context LLM Inference [6.886434948681708]
Large Language Models (LLMs) increasingly require processing long text sequences, but GPU memory limitations force difficult trade-offs between memory capacity and bandwidth.
We identify that the critical memory bottleneck lies in the decoding phase of multi-head attention.
We propose L3, a hardware-software co-designed system integrating DIMM-PIM and GPU devices.
arXiv Detail & Related papers (2025-04-24T14:14:07Z) - LoL-PIM: Long-Context LLM Decoding with Scalable DRAM-PIM System [6.21613161960432]
Large language models (LLMs) process sequences of tens of thousands of tokens.<n> processing-in-Memory (PIM) maximizes memory bandwidth by moving compute to the data.<n>LoL-PIM is a multi-node PIM architecture that accelerates long context LLM through hardware-software co-design.
arXiv Detail & Related papers (2024-12-28T14:38:16Z) - Anda: Unlocking Efficient LLM Inference with a Variable-Length Grouped Activation Data Format [5.527166214435735]
quantized large language models (LLMs) leverage low-bit integer (INT) weights and retain floating-point (FP) activations.
This shifts the energy and latency bottlenecks towards the FP activations that are associated with costly memory accesses and computations.
Existing LLM accelerators focus primarily on computation optimizations, overlooking the potential of jointly optimizing FP computations and data movement.
arXiv Detail & Related papers (2024-11-24T20:59:39Z) - DeeR-VLA: Dynamic Inference of Multimodal Large Language Models for Efficient Robot Execution [114.61347672265076]
Development of MLLMs for real-world robots is challenging due to the typically limited computation and memory capacities available on robotic platforms.
We propose a Dynamic Early-Exit Framework for Robotic Vision-Language-Action Model (DeeR) that automatically adjusts the size of the activated MLLM.
DeeR demonstrates significant reductions in computational costs of LLM by 5.2-6.5x and GPU memory of LLM by 2-6x without compromising performance.
arXiv Detail & Related papers (2024-11-04T18:26:08Z) - Progressive Mixed-Precision Decoding for Efficient LLM Inference [49.05448842542558]
We introduce Progressive Mixed-Precision Decoding (PMPD) to address the memory-boundedness of decoding.
PMPD achieves 1.4$-$12.2$times$ speedup in matrix-vector multiplications over fp16 models.
Our approach delivers a throughput gain of 3.8$-$8.0$times$ over fp16 models and up to 1.54$times$ over uniform quantization approaches.
arXiv Detail & Related papers (2024-10-17T11:46:33Z) - EPS-MoE: Expert Pipeline Scheduler for Cost-Efficient MoE Inference [49.94169109038806]
This paper introduces EPS-MoE, a novel expert pipeline scheduler for MoE that surpasses the existing parallelism schemes.<n>Our results demonstrate at most 52.4% improvement in prefill throughput compared to existing parallel inference methods.
arXiv Detail & Related papers (2024-10-16T05:17:49Z) - PIM-Opt: Demystifying Distributed Optimization Algorithms on a Real-World Processing-In-Memory System [21.09681871279162]
Modern Machine Learning (ML) training on large-scale datasets is a time-consuming workload.
It relies on the optimization algorithm Gradient Descent (SGD) due to its effectiveness, simplicity, and generalization performance.
processor-centric architectures suffer from low performance and high energy consumption while executing ML training workloads.
Processing-In-Memory (PIM) is a promising solution to alleviate the data movement bottleneck.
arXiv Detail & Related papers (2024-04-10T17:00:04Z) - Extreme Compression of Large Language Models via Additive Quantization [59.3122859349777]
Our algorithm, called AQLM, generalizes the classic Additive Quantization (AQ) approach for information retrieval.
We provide fast GPU and CPU implementations of AQLM for token generation, which enable us to match or outperform optimized FP16 implementations for speed.
arXiv Detail & Related papers (2024-01-11T18:54:44Z) - L2MAC: Large Language Model Automatic Computer for Extensive Code Generation [52.81694565226513]
Transformer-based large language models (LLMs) are constrained by the fixed context window of the underlying transformer architecture.
This paper presents L2MAC, the first practical LLM-based general-purpose stored-program automatic computer (von Neumann architecture) framework, for long and consistent output generation.
arXiv Detail & Related papers (2023-10-02T16:55:19Z) - Harnessing Deep Learning and HPC Kernels via High-Level Loop and Tensor Abstractions on CPU Architectures [67.47328776279204]
This work introduces a framework to develop efficient, portable Deep Learning and High Performance Computing kernels.
We decompose the kernel development in two steps: 1) Expressing the computational core using Processing Primitives (TPPs) and 2) Expressing the logical loops around TPPs in a high-level, declarative fashion.
We demonstrate the efficacy of our approach using standalone kernels and end-to-end workloads that outperform state-of-the-art implementations on diverse CPU platforms.
arXiv Detail & Related papers (2023-04-25T05:04:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.