L2MAC: Large Language Model Automatic Computer for Extensive Code Generation
- URL: http://arxiv.org/abs/2310.02003v5
- Date: Wed, 10 Apr 2024 13:38:30 GMT
- Title: L2MAC: Large Language Model Automatic Computer for Extensive Code Generation
- Authors: Samuel Holt, Max Ruiz Luyten, Mihaela van der Schaar,
- Abstract summary: Transformer-based large language models (LLMs) are constrained by the fixed context window of the underlying transformer architecture.
This paper presents L2MAC, the first practical LLM-based general-purpose stored-program automatic computer (von Neumann architecture) framework, for long and consistent output generation.
- Score: 52.81694565226513
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transformer-based large language models (LLMs) are constrained by the fixed context window of the underlying transformer architecture, hindering their ability to produce long and coherent outputs. Memory-augmented LLMs are a promising solution, but current approaches cannot handle long output generation tasks since they (1) only focus on reading memory and reduce its evolution to the concatenation of new memories or (2) use very specialized memories that cannot adapt to other domains. This paper presents L2MAC, the first practical LLM-based general-purpose stored-program automatic computer (von Neumann architecture) framework, an LLM-based multi-agent system, for long and consistent output generation. Its memory has two components: the instruction registry, which is populated with a prompt program to solve the user-given task, and a file store, which will contain the final and intermediate outputs. Each instruction in turn is executed by a separate LLM agent, whose context is managed by a control unit capable of precise memory reading and writing to ensure effective interaction with the file store. These components enable L2MAC to generate extensive outputs, bypassing the constraints of the finite context window while producing outputs that fulfill a complex user-specified task. We empirically demonstrate that L2MAC achieves state-of-the-art performance in generating large codebases for system design tasks, significantly outperforming other coding methods in implementing the detailed user-specified task; we show that L2MAC works for general-purpose extensive text-based tasks, such as writing an entire book; and we provide valuable insights into L2MAC's performance improvement over existing methods.
Related papers
- The Compressor-Retriever Architecture for Language Model OS [20.56093501980724]
This paper explores the concept of using a language model as the core component of an operating system (OS)
A key challenge in realizing such an LM OS is managing the life-long context and ensuring statefulness across sessions.
We introduce compressor-retriever, a model-agnostic architecture designed for life-long context management.
arXiv Detail & Related papers (2024-09-02T23:28:15Z) - Rome was Not Built in a Single Step: Hierarchical Prompting for LLM-based Chip Design [22.70660876673987]
Large Language Models (LLMs) are effective in computer hardware synthesis via hardware description language (HDL) generation.
However, LLM-assisted approaches for HDL generation struggle when handling complex tasks.
We introduce a suite of hierarchical prompting techniques which facilitate efficient stepwise design methods.
arXiv Detail & Related papers (2024-07-23T21:18:31Z) - ML-Bench: Evaluating Large Language Models and Agents for Machine Learning Tasks on Repository-Level Code [76.84199699772903]
ML-Bench is a benchmark rooted in real-world programming applications that leverage existing code repositories to perform tasks.
To evaluate both Large Language Models (LLMs) and AI agents, two setups are employed: ML-LLM-Bench for assessing LLMs' text-to-code conversion within a predefined deployment environment, and ML-Agent-Bench for testing autonomous agents in an end-to-end task execution within a Linux sandbox environment.
arXiv Detail & Related papers (2023-11-16T12:03:21Z) - MemGPT: Towards LLMs as Operating Systems [50.02623936965231]
Large language models (LLMs) have revolutionized AI, but are constrained by limited context windows.
We propose virtual context management, a technique drawing inspiration from hierarchical memory systems in traditional operating systems.
We release MemGPT code and data for our experiments at https://memgpt.ai.
arXiv Detail & Related papers (2023-10-12T17:51:32Z) - AskIt: Unified Programming Interface for Programming with Large Language
Models [0.0]
Large Language Models (LLMs) exhibit a unique phenomenon known as emergent abilities, demonstrating adeptness across numerous tasks.
This paper introduces AskIt, a domain-specific language specifically designed for LLMs.
Across 50 tasks, AskIt generated concise prompts, achieving a 16.14 % reduction in prompt length compared to benchmarks.
arXiv Detail & Related papers (2023-08-29T21:44:27Z) - RET-LLM: Towards a General Read-Write Memory for Large Language Models [53.288356721954514]
RET-LLM is a novel framework that equips large language models with a general write-read memory unit.
Inspired by Davidsonian semantics theory, we extract and save knowledge in the form of triplets.
Our framework exhibits robust performance in handling temporal-based question answering tasks.
arXiv Detail & Related papers (2023-05-23T17:53:38Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z) - Inference with Reference: Lossless Acceleration of Large Language Models [97.04200102556551]
LLMA is an accelerator to speed up Large Language Model (LLM) inference with references.
It is motivated by the observation that there are abundant identical text spans between the decoding result by an LLM and the reference that is available in many real world scenarios.
arXiv Detail & Related papers (2023-04-10T09:55:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.