論文の概要: Decoding for Punctured Convolutional and Turbo Codes: A Deep Learning Solution for Protocols Compliance
- arxiv url: http://arxiv.org/abs/2502.15475v1
- Date: Fri, 21 Feb 2025 14:00:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-24 16:09:16.415431
- Title: Decoding for Punctured Convolutional and Turbo Codes: A Deep Learning Solution for Protocols Compliance
- Title(参考訳): Punctured ConvolutionalとTurbo Codeのデコード:プロトコル準拠のためのディープラーニングソリューション
- Authors: Yongli Yan, Linglong Dai,
- Abstract要約: 本稿では,Long Short-Term Memory(LSTM)をベースとしたデコードアーキテクチャを提案する。
提案手法は、句読解畳み込み符号とターボ符号を統一する。
句読点埋め込み機構は、句読点パターンを直接ネットワークに統合し、様々なコードレートへのシームレスな適応を可能にする。
- 参考スコア(独自算出の注目度): 22.85778198575678
- License:
- Abstract: Neural network-based decoding methods have shown promise in enhancing error correction performance, but traditional approaches struggle with the challenges posed by punctured codes. In particular, these methods fail to address the complexities of variable code rates and the need for protocol compatibility. This paper presents a unified Long Short-Term Memory (LSTM)-based decoding architecture specifically designed to overcome these challenges. The proposed method unifies punctured convolutional and Turbo codes. A puncture embedding mechanism integrates puncturing patterns directly into the network, enabling seamless adaptation to varying code rates, while balanced bit error rate training ensures robustness across different code lengths, rates, and channels, maintaining protocol flexibility. Extensive simulations in Additive White Gaussian Noise and Rayleigh fading channels demonstrate that the proposed approach outperforms conventional decoding techniques, providing significant improvements in decoding accuracy and robustness. These results underscore the potential of LSTM-based decoding as a promising solution for next-generation artificial intelligence powered communication systems.
- Abstract(参考訳): ニューラルネットワークに基づく復号法では誤り訂正性能の向上が期待できるが,従来の手法では句読点符号による課題に対処する。
特に、これらのメソッドは、可変コードレートの複雑さとプロトコル互換性の必要性に対処できない。
本稿では,これらの課題を克服するために,LSTM(Long Short-Term Memory)に基づくデコーディングアーキテクチャを提案する。
提案手法は、句読解畳み込み符号とターボ符号を統一する。
句読点埋め込み機構は、ネットワークに直接句読点パターンを統合することで、さまざまなコードレートへのシームレスな適応を可能にし、バランスの取れたビットエラー率トレーニングは、異なるコード長、レート、チャネル間の堅牢性を保証し、プロトコルの柔軟性を維持する。
付加的なホワイトガウスノイズとレイリーフェディングチャネルの広範囲なシミュレーションは、提案手法が従来の復号法よりも優れており、復号精度とロバスト性に大きな改善をもたらすことを示した。
これらの結果は、次世代人工知能を用いた通信システムにおいて、LSTMベースの復号化が有望な解決策となる可能性を示している。
関連論文リスト
- Accelerating Error Correction Code Transformers [56.75773430667148]
本稿では,トランスを用いたデコーダの高速化手法を提案する。
最新のハードウェアでは、90%の圧縮比を実現し、算術演算エネルギー消費を少なくとも224倍削減する。
論文 参考訳(メタデータ) (2024-10-08T11:07:55Z) - Error Correction Code Transformer: From Non-Unified to Unified [20.902351179839282]
従来のデコーダは、特定のデコードアルゴリズムに適した固定ハードウェア回路として設計されていた。
本稿では、複数の線形ブロックコードを扱うことができる、コードに依存しないトランスフォーマーベースのデコードアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-10-04T12:30:42Z) - Factor Graph Optimization of Error-Correcting Codes for Belief Propagation Decoding [62.25533750469467]
低密度パリティ・チェック (LDPC) コードは、他の種類のコードに対していくつかの利点がある。
提案手法は,既存の人気符号の復号性能を桁違いに向上させる。
論文 参考訳(メタデータ) (2024-06-09T12:08:56Z) - Learning Linear Block Error Correction Codes [62.25533750469467]
本稿では,バイナリ線形ブロック符号の統一エンコーダデコーダトレーニングを初めて提案する。
また,コード勾配の効率的なバックプロパゲーションのために,自己注意マスキングを行うトランスフォーマーモデルを提案する。
論文 参考訳(メタデータ) (2024-05-07T06:47:12Z) - Friendly Attacks to Improve Channel Coding Reliability [0.33993877661368754]
フレンドリーアタック」は、エラー訂正チャネルコードの性能を向上させることを目的としている。
敵攻撃の概念に触発された本手法は,ニューラルネットワーク入力にわずかな摂動を導入するという考え方を活用する。
提案手法は,異なるチャネル,変調,コード,デコーダ間の信頼性を向上させることができることを示す。
論文 参考訳(メタデータ) (2024-01-25T13:46:21Z) - Neural Belief Propagation Decoding of Quantum LDPC Codes Using
Overcomplete Check Matrices [60.02503434201552]
元のチェック行列における行の線形結合から生成された冗長な行を持つチェック行列に基づいてQLDPC符号を復号する。
このアプローチは、非常に低い復号遅延の利点を付加して、復号性能を著しく向上させる。
論文 参考訳(メタデータ) (2022-12-20T13:41:27Z) - Denoising Diffusion Error Correction Codes [92.10654749898927]
近年、ニューラルデコーダは古典的デコーダ技術に対する優位性を実証している。
最近の最先端のニューラルデコーダは複雑で、多くのレガシデコーダの重要な反復的スキームが欠如している。
本稿では,任意のブロック長の線形符号のソフトデコードにデノナイズ拡散モデルを適用することを提案する。
論文 参考訳(メタデータ) (2022-09-16T11:00:50Z) - Graph Neural Networks for Channel Decoding [71.15576353630667]
低密度パリティチェック(LDPC)やBCH符号など、様々な符号化方式の競合復号性能を示す。
ニューラルネットワーク(NN)は、与えられたグラフ上で一般化されたメッセージパッシングアルゴリズムを学習する。
提案するデコーダを,従来のチャネル復号法および最近のディープラーニングに基づく結果と比較した。
論文 参考訳(メタデータ) (2022-07-29T15:29:18Z) - Boost decoding performance of finite geometry LDPC codes with deep
learning tactics [3.1519370595822274]
有限幾何LDPC符号のクラスに対して,低複雑かつ高性能なデコーダを求める。
高品質なトレーニングデータを効果的に生成する方法について詳述する。
論文 参考訳(メタデータ) (2022-05-01T14:41:16Z) - Infomax Neural Joint Source-Channel Coding via Adversarial Bit Flip [41.28049430114734]
本稿では、ニューラルジョイント・ソース・チャネル符号化方式の安定性と堅牢性を改善するために、Infomax Adversarial-Bit-Flip (IABF) と呼ばれる新しい正規化手法を提案する。
我々のIABFは、圧縮と誤り訂正のベンチマークの両方で最先端のパフォーマンスを達成でき、ベースラインをかなりの差で上回ることができる。
論文 参考訳(メタデータ) (2020-04-03T10:00:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。