Sheaf theory: from deep geometry to deep learning
- URL: http://arxiv.org/abs/2502.15476v1
- Date: Fri, 21 Feb 2025 14:00:25 GMT
- Title: Sheaf theory: from deep geometry to deep learning
- Authors: Anton Ayzenberg, Thomas Gebhart, German Magai, Grigory Solomadin,
- Abstract summary: This paper provides an overview of the applications of sheaf theory in deep learning, data science, and computer science.<n>We describe intuitions and motivations underlying sheaf theory shared by both theoretical researchers and practitioners.<n>We present a new algorithm to compute sheaf cohomology on arbitrary finite posets in response.
- Score: 0.3749861135832073
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper provides an overview of the applications of sheaf theory in deep learning, data science, and computer science in general. The primary text of this work serves as a friendly introduction to applied and computational sheaf theory accessible to those with modest mathematical familiarity. We describe intuitions and motivations underlying sheaf theory shared by both theoretical researchers and practitioners, bridging classical mathematical theory and its more recent implementations within signal processing and deep learning. We observe that most notions commonly considered specific to cellular sheaves translate to sheaves on arbitrary posets, providing an interesting avenue for further generalization of these methods in applications, and we present a new algorithm to compute sheaf cohomology on arbitrary finite posets in response. By integrating classical theory with recent applications, this work reveals certain blind spots in current machine learning practices. We conclude with a list of problems related to sheaf-theoretic applications that we find mathematically insightful and practically instructive to solve. To ensure the exposition of sheaf theory is self-contained, a rigorous mathematical introduction is provided in appendices which moves from an introduction of diagrams and sheaves to the definition of derived functors, higher order cohomology, sheaf Laplacians, sheaf diffusion, and interconnections of these subjects therein.
Related papers
- Lecture Notes on Normalizing Flows for Lattice Quantum Field Theories [0.0]
Notes aim to give a brief account of lattice field theories, normalizing flows, and how the latter can be applied to study the former.
The notes are based on the lectures given by the first author in various recent research schools.
arXiv Detail & Related papers (2025-04-25T07:22:11Z) - Towards a Categorical Foundation of Deep Learning: A Survey [0.0]
This thesis is a survey that covers some recent work attempting to study machine learning categorically.
acting as a lingua franca of mathematics and science, category theory might be able to give a unifying structure to the field of machine learning.
arXiv Detail & Related papers (2024-10-07T13:11:16Z) - Lecture Notes on Linear Neural Networks: A Tale of Optimization and Generalization in Deep Learning [14.909298522361306]
Notes are based on a lecture delivered by NC on March 2021, as part of an advanced course in Princeton University on the mathematical understanding of deep learning.
They present a theory (developed by NC, NR and collaborators) of linear neural networks -- a fundamental model in the study of optimization and generalization in deep learning.
arXiv Detail & Related papers (2024-08-25T08:24:48Z) - Mathematical theory of deep learning [0.46040036610482665]
It covers fundamental results in approximation theory, optimization theory, and statistical learning theory.
The book aims to equip readers with foundational knowledge on the topic.
arXiv Detail & Related papers (2024-07-25T20:37:12Z) - Foundations and Frontiers of Graph Learning Theory [81.39078977407719]
Recent advancements in graph learning have revolutionized the way to understand and analyze data with complex structures.
Graph Neural Networks (GNNs), i.e. neural network architectures designed for learning graph representations, have become a popular paradigm.
This article provides a comprehensive summary of the theoretical foundations and breakthroughs concerning the approximation and learning behaviors intrinsic to prevalent graph learning models.
arXiv Detail & Related papers (2024-07-03T14:07:41Z) - Rigor with Machine Learning from Field Theory to the Poincar\'e
Conjecture [0.0]
We discuss techniques for obtaining rigor in the natural sciences with machine learning.
Non-rigorous methods may lead to rigorous results via conjecture generation or verification by reinforcement learning.
One can also imagine building direct bridges between machine learning theory and either mathematics or theoretical physics.
arXiv Detail & Related papers (2024-02-20T19:00:59Z) - Bayesian Learning for Neural Networks: an algorithmic survey [95.42181254494287]
This self-contained survey engages and introduces readers to the principles and algorithms of Bayesian Learning for Neural Networks.
It provides an introduction to the topic from an accessible, practical-algorithmic perspective.
arXiv Detail & Related papers (2022-11-21T21:36:58Z) - Formalising Concepts as Grounded Abstractions [68.24080871981869]
This report shows how representation learning can be used to induce concepts from raw data.
The main technical goal of this report is to show how techniques from representation learning can be married with a lattice-theoretic formulation of conceptual spaces.
arXiv Detail & Related papers (2021-01-13T15:22:01Z) - Recent advances in deep learning theory [104.01582662336256]
This paper reviews and organizes the recent advances in deep learning theory.
The literature is categorized in six groups: (1) complexity and capacity-based approaches for analysing the generalizability of deep learning; (2) differential equations and their dynamic systems for modelling gradient descent and its variants; (3) the geometrical structures of the loss landscape that drives the trajectories of the dynamic systems; and (5) theoretical foundations of several special structures in network architectures.
arXiv Detail & Related papers (2020-12-20T14:16:41Z) - Developing Constrained Neural Units Over Time [81.19349325749037]
This paper focuses on an alternative way of defining Neural Networks, that is different from the majority of existing approaches.
The structure of the neural architecture is defined by means of a special class of constraints that are extended also to the interaction with data.
The proposed theory is cast into the time domain, in which data are presented to the network in an ordered manner.
arXiv Detail & Related papers (2020-09-01T09:07:25Z) - A Chain Graph Interpretation of Real-World Neural Networks [58.78692706974121]
We propose an alternative interpretation that identifies NNs as chain graphs (CGs) and feed-forward as an approximate inference procedure.
The CG interpretation specifies the nature of each NN component within the rich theoretical framework of probabilistic graphical models.
We demonstrate with concrete examples that the CG interpretation can provide novel theoretical support and insights for various NN techniques.
arXiv Detail & Related papers (2020-06-30T14:46:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.