論文の概要: CondiQuant: Condition Number Based Low-Bit Quantization for Image Super-Resolution
- arxiv url: http://arxiv.org/abs/2502.15478v1
- Date: Fri, 21 Feb 2025 14:04:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-24 17:06:46.582844
- Title: CondiQuant: Condition Number Based Low-Bit Quantization for Image Super-Resolution
- Title(参考訳): CondiQuant:画像超解像のための条件数に基づく低ビット量子化
- Authors: Kai Liu, Dehui Wang, Zhiteng Li, Zheng Chen, Yong Guo, Wenbo Li, Linghe Kong, Yulun Zhang,
- Abstract要約: 画像超解像のための条件数に基づく低ビットポストトレーニング量子化であるCondiQuantを提案する。
CondiQuantは、計算オーバーヘッドを伴わずに、既存の最先端のポストトレーニング量子化手法よりも精度が高いことを示す。
- 参考スコア(独自算出の注目度): 59.91470739501034
- License:
- Abstract: Low-bit model quantization for image super-resolution (SR) is a longstanding task that is renowned for its surprising compression and acceleration ability. However, accuracy degradation is inevitable when compressing the full-precision (FP) model to ultra-low bit widths (2~4 bits). Experimentally, we observe that the degradation of quantization is mainly attributed to the quantization of activation instead of model weights. In numerical analysis, the condition number of weights could measure how much the output value can change for a small change in the input argument, inherently reflecting the quantization error. Therefore, we propose CondiQuant, a condition number based low-bit post-training quantization for image super-resolution. Specifically, we formulate the quantization error as the condition number of weight metrics. By decoupling the representation ability and the quantization sensitivity, we design an efficient proximal gradient descent algorithm to iteratively minimize the condition number and maintain the output still. With comprehensive experiments, we demonstrate that CondiQuant outperforms existing state-of-the-art post-training quantization methods in accuracy without computation overhead and gains the theoretically optimal compression ratio in model parameters. Our code and model are released at https://github.com/Kai-Liu001/CondiQuant.
- Abstract(参考訳): 画像超解像のための低ビットモデル量子化(SR)は、その驚くべき圧縮と加速能力で有名な長年の課題である。
しかし、フル精度(FP)モデルを超低ビット幅(2〜4ビット)に圧縮する場合、精度の低下は避けられない。
実験により,量子化の劣化は主にモデル重みの代わりに活性化の量子化に起因することがわかった。
数値解析において、重みの条件数は、本質的に量子化誤差を反映して、入力引数の小さな変化に対して出力値がどの程度変化できるかを測定することができる。
そこで我々は,画像超解像のための条件数に基づく低ビットポストトレーニング量子化であるCondiQuantを提案する。
具体的には、重み値の条件数として量子化誤差を定式化する。
表現能力と量子化感度を分離することにより、条件数を反復的に最小化し、出力を維持するための効率的な近位勾配降下アルゴリズムを設計する。
総合的な実験により、CondiQuantは計算オーバーヘッドを伴わずに既存の最先端のポストトレーニング量子化手法を精度良く上回り、モデルパラメータの理論的に最適な圧縮比を得ることを示した。
私たちのコードとモデルはhttps://github.com/Kai-Liu001/CondiQuant.comで公開されています。
関連論文リスト
- PTQ1.61: Push the Real Limit of Extremely Low-Bit Post-Training Quantization Methods for Large Language Models [64.84734437930362]
大規模言語モデル(LLM)は、非常に低ビット(2ビット未満)の量子化に直面した場合、性能が著しく低下する。
我々はPTQ1.61と呼ばれる極低ビットのPTQ法を提案し、これによって初めて1.61ビットの重み量子化が可能となる。
実験により、PTQ1.61は極低ビット量子化において最先端の性能を達成することが示された。
論文 参考訳(メタデータ) (2025-02-18T08:04:58Z) - DilateQuant: Accurate and Efficient Diffusion Quantization via Weight Dilation [3.78219736760145]
拡散モデルの量子化はモデルを圧縮し加速する有望な方法である。
既存の方法は、低ビット量子化のために、精度と効率の両方を同時に維持することはできない。
拡散モデルのための新しい量子化フレームワークであるDilateQuantを提案する。
論文 参考訳(メタデータ) (2024-09-22T04:21:29Z) - ISQuant: apply squant to the real deployment [0.0]
量子化と復号化の組み合わせがモデルトレーニングに使われている理由を分析する。
8ビットモデルをデプロイするためのソリューションとしてISQuantを提案する。
論文 参考訳(メタデータ) (2024-07-05T15:10:05Z) - 2DQuant: Low-bit Post-Training Quantization for Image Super-Resolution [83.09117439860607]
低ビット量子化は、エッジ展開のための画像超解像(SR)モデルを圧縮するために広く普及している。
低ビット量子化は、フル精度(FP)と比較してSRモデルの精度を低下させることが知られている。
本稿では2DQuantという画像超解像のための2段階の低ビット後量子化(PTQ)法を提案する。
論文 参考訳(メタデータ) (2024-06-10T06:06:11Z) - MixQuant: Mixed Precision Quantization with a Bit-width Optimization
Search [7.564770908909927]
量子化は、効率的なディープニューラルネットワーク(DNN)を作成する技術である
ラウンドオフ誤差に基づいて各層重みに対する最適な量子化ビット幅を求める検索アルゴリズムであるMixQuantを提案する。
我々は、MixQuantと最先端の量子化手法BRECQを組み合わせることで、BRECQ単独よりも優れた量子化モデル精度が得られることを示す。
論文 参考訳(メタデータ) (2023-09-29T15:49:54Z) - NUPES : Non-Uniform Post-Training Quantization via Power Exponent Search [7.971065005161565]
量子化は浮動小数点表現を低ビット幅の固定点表現に変換する技術である。
量子化空間全体にわたって新しい量子化重みを学習する方法を示す。
本研究では,データフリーとデータ駆動の両構成において,最先端の圧縮率を実現する手法の有効性を示す。
論文 参考訳(メタデータ) (2023-08-10T14:19:58Z) - One Model for All Quantization: A Quantized Network Supporting Hot-Swap
Bit-Width Adjustment [36.75157407486302]
多様なビット幅をサポートする全量子化のためのモデルを訓練する手法を提案する。
重みの多様性を高めるためにウェーブレット分解と再構成を用いる。
同じ精度で訓練された専用モデルに匹敵する精度が得られる。
論文 参考訳(メタデータ) (2021-05-04T08:10:50Z) - Differentiable Model Compression via Pseudo Quantization Noise [99.89011673907814]
本稿では,モデルパラメータに独立な擬似量子化雑音を加えて量子化演算子の効果を近似する。
本手法が,画像分類,言語モデリング,音声ソース分離などのベンチマークやアーキテクチャにおいて,最先端の量子化技術を上回ることを実験的に検証した。
論文 参考訳(メタデータ) (2021-04-20T14:14:03Z) - Q-ASR: Integer-only Zero-shot Quantization for Efficient Speech
Recognition [65.7040645560855]
ASRモデルに対する整数のみのゼロショット量子化スキームであるQ-ASRを提案する。
全精度ベースラインモデルと比較すると,wrの変化は無視できる。
Q-ASRは、WER劣化が少ない4倍以上の圧縮率を示します。
論文 参考訳(メタデータ) (2021-03-31T06:05:40Z) - DAQ: Distribution-Aware Quantization for Deep Image Super-Resolution
Networks [49.191062785007006]
画像超解像のための深い畳み込みニューラルネットワークの定量化は、計算コストを大幅に削減する。
既存の作業は、4ビット以下の超低精度の厳しい性能低下に苦しむか、または性能を回復するために重い微調整プロセスを必要とします。
高精度なトレーニングフリー量子化を実現する新しい分散認識量子化方式(DAQ)を提案する。
論文 参考訳(メタデータ) (2020-12-21T10:19:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。