LightThinker: Thinking Step-by-Step Compression
- URL: http://arxiv.org/abs/2502.15589v1
- Date: Fri, 21 Feb 2025 16:57:22 GMT
- Title: LightThinker: Thinking Step-by-Step Compression
- Authors: Jintian Zhang, Yuqi Zhu, Mengshu Sun, Yujie Luo, Shuofei Qiao, Lun Du, Da Zheng, Huajun Chen, Ningyu Zhang,
- Abstract summary: We propose LightThinker, a method that enables large language models to dynamically compress intermediate thoughts during reasoning.<n>Inspired by human cognitive processes, LightThinker compresses thought steps into compact representations and discards the original reasoning chains.<n>Experiments show that LightThinker reduces peak memory usage and inference time, while maintaining competitive accuracy.
- Score: 53.8069487638972
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have shown remarkable performance in complex reasoning tasks, but their efficiency is hindered by the substantial memory and computational costs associated with generating lengthy tokens. In this paper, we propose LightThinker, a novel method that enables LLMs to dynamically compress intermediate thoughts during reasoning. Inspired by human cognitive processes, LightThinker compresses verbose thought steps into compact representations and discards the original reasoning chains, thereby significantly reducing the number of tokens stored in the context window. This is achieved by training the model on when and how to perform compression through data construction, mapping hidden states to condensed gist tokens, and creating specialized attention masks. Additionally, we introduce the Dependency (Dep) metric to quantify the degree of compression by measuring the reliance on historical tokens during generation. Extensive experiments on four datasets and two models show that LightThinker reduces peak memory usage and inference time, while maintaining competitive accuracy. Our work provides a new direction for improving the efficiency of LLMs in complex reasoning tasks without sacrificing performance. Code will be released at https://github.com/zjunlp/LightThinker.
Related papers
- Sketch-of-Thought: Efficient LLM Reasoning with Adaptive Cognitive-Inspired Sketching [60.04718679054704]
We introduce Sketch-of-Thought (SoT), a novel prompting framework.
It combines cognitive-inspired reasoning paradigms with linguistic constraints to minimize token usage.
SoT achieves token reductions of 76% with negligible accuracy impact.
arXiv Detail & Related papers (2025-03-07T06:57:17Z) - Chain of Draft: Thinking Faster by Writing Less [37.492654173517046]
Chain of Draft (CoD) is a novel paradigm inspired by human cognitive processes.
CoD generates minimalistic yet informative intermediate reasoning outputs while solving tasks.
arXiv Detail & Related papers (2025-02-25T19:36:06Z) - Token Assorted: Mixing Latent and Text Tokens for Improved Language Model Reasoning [44.84219266082269]
Large Language Models (LLMs) excel at reasoning and planning when trained on chainof-thought (CoT) data.<n>We propose a hybrid representation of the reasoning process, where we partially abstract away the initial reasoning steps using latent discrete tokens.
arXiv Detail & Related papers (2025-02-05T15:33:00Z) - RedundancyLens: Revealing and Exploiting Visual Token Processing Redundancy for Efficient Decoder-Only MLLMs [38.34856927170692]
We propose a training-free framework for analyzing trained Multimodal Large Language Model (MLLM)<n>It consists of Probe-Activated Dynamic FFN and Hollow Attention, which enable adjustable reductions in computations for visual tokens.<n>Experiments demonstrate substantial, structured, and clustered redundancy unique to decoder-only MLLMs.
arXiv Detail & Related papers (2025-01-31T11:09:16Z) - Compressing KV Cache for Long-Context LLM Inference with Inter-Layer Attention Similarity [24.118503938098307]
Existing methods, including selective token retention and window-based attention, improve efficiency but risk discarding important tokens needed for future text generation.<n>We propose an approach that enhances LLM efficiency without token loss by reducing the memory and computational load of less important tokens, rather than discarding them.
arXiv Detail & Related papers (2024-12-03T08:29:27Z) - Inference Optimal VLMs Need Only One Visual Token but Larger Models [54.01228554126122]
Vision Language Models (VLMs) have demonstrated strong capabilities across various visual understanding and reasoning tasks.
VLMs are often constrained by high latency during inference due to substantial compute required to process the large number of input tokens.
We take some initial steps towards building approaches tailored for high token compression settings.
arXiv Detail & Related papers (2024-11-05T18:54:21Z) - VideoLLM-MoD: Efficient Video-Language Streaming with Mixture-of-Depths Vision Computation [66.00245701441547]
We introduce a novel approach to reduce vision compute by leveraging redundant vision tokens "skipping layers" rather than decreasing the number of vision tokens.
Our method, VideoLLM-MoD, is inspired by mixture-of-depths LLMs and addresses the challenge of numerous vision tokens in long-term or streaming video.
arXiv Detail & Related papers (2024-08-29T17:21:58Z) - Hierarchical Context Merging: Better Long Context Understanding for Pre-trained LLMs [61.40047491337793]
We present Hierarchical cOntext MERging (HOMER), a new training-free scheme designed to overcome the limitations of large language models.
HomeR uses a divide-and-conquer algorithm, dividing long inputs into manageable chunks.
A token reduction technique precedes each merging, ensuring memory usage efficiency.
arXiv Detail & Related papers (2024-04-16T06:34:08Z) - In-context Autoencoder for Context Compression in a Large Language Model [70.7621953091318]
We propose the In-context Autoencoder (ICAE) to compress a long context into short compact memory slots.
ICAE is first pretrained using both autoencoding and language modeling objectives on massive text data.
arXiv Detail & Related papers (2023-07-13T17:59:21Z) - Compress, Then Prompt: Improving Accuracy-Efficiency Trade-off of LLM
Inference with Transferable Prompt [96.24800696597707]
We introduce a new perspective to optimize this trade-off by prompting compressed models.
We propose a soft prompt learning method where we expose the compressed model to the prompt learning process.
Our experimental analysis suggests our soft prompt strategy greatly improves the performance of the 8x compressed LLaMA-7B model.
arXiv Detail & Related papers (2023-05-17T20:45:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.