Sketch-of-Thought: Efficient LLM Reasoning with Adaptive Cognitive-Inspired Sketching
- URL: http://arxiv.org/abs/2503.05179v1
- Date: Fri, 07 Mar 2025 06:57:17 GMT
- Title: Sketch-of-Thought: Efficient LLM Reasoning with Adaptive Cognitive-Inspired Sketching
- Authors: Simon A. Aytes, Jinheon Baek, Sung Ju Hwang,
- Abstract summary: We introduce Sketch-of-Thought (SoT), a novel prompting framework.<n>It combines cognitive-inspired reasoning paradigms with linguistic constraints to minimize token usage.<n>SoT achieves token reductions of 76% with negligible accuracy impact.
- Score: 60.04718679054704
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in large language models have demonstrated remarkable reasoning capabilities through Chain of Thought (CoT) prompting, but often at the cost of excessive verbosity in their intermediate outputs, which increases computational overhead. We introduce Sketch-of-Thought (SoT), a novel prompting framework that combines cognitive-inspired reasoning paradigms with linguistic constraints to minimize token usage while preserving reasoning accuracy. SoT is designed as a flexible framework that can incorporate any custom reasoning paradigms based on cognitive science, and we instantiate it with three such paradigms - Conceptual Chaining, Chunked Symbolism, and Expert Lexicons - each tailored to different reasoning tasks and selected dynamically via a lightweight routing model. Through comprehensive evaluation across 15 reasoning datasets with multiple languages and multimodal scenarios, we demonstrate that SoT achieves token reductions of 76% with negligible accuracy impact. In certain domains like mathematical and multi-hop reasoning, it even improves accuracy while using significantly fewer tokens. Our code is publicly available: https://www.github.com/SimonAytes/SoT.
Related papers
- Landscape of Thoughts: Visualizing the Reasoning Process of Large Language Models [42.407188124841234]
Landscape of thoughts is a tool to inspect the reasoning paths of chain-of-thought on any multi-choice dataset.
It distinguishes between strong and weak models, correct and incorrect answers, as well as different reasoning tasks.
It also uncovers undesirable reasoning patterns, such as low consistency and high uncertainty.
arXiv Detail & Related papers (2025-03-28T06:09:51Z) - Chain of Draft: Thinking Faster by Writing Less [37.492654173517046]
Chain of Draft (CoD) is a novel paradigm inspired by human cognitive processes.<n>CoD generates minimalistic yet informative intermediate reasoning outputs while solving tasks.
arXiv Detail & Related papers (2025-02-25T19:36:06Z) - LightThinker: Thinking Step-by-Step Compression [53.8069487638972]
We propose LightThinker, a method that enables large language models to dynamically compress intermediate thoughts during reasoning.<n>Inspired by human cognitive processes, LightThinker compresses thought steps into compact representations and discards the original reasoning chains.<n>Experiments show that LightThinker reduces peak memory usage and inference time, while maintaining competitive accuracy.
arXiv Detail & Related papers (2025-02-21T16:57:22Z) - Token Assorted: Mixing Latent and Text Tokens for Improved Language Model Reasoning [44.84219266082269]
Large Language Models (LLMs) excel at reasoning and planning when trained on chainof-thought (CoT) data.<n>We propose a hybrid representation of the reasoning process, where we partially abstract away the initial reasoning steps using latent discrete tokens.
arXiv Detail & Related papers (2025-02-05T15:33:00Z) - Efficient Reasoning with Hidden Thinking [48.96945580741641]
Chain-of-Thought (CoT) reasoning has become a powerful framework for improving complex problem-solving capabilities.
We propose $textbfHeima$ (as hidden llama), an efficient reasoning framework that leverages reasoning CoTs at hidden latent space.
Heima model achieves higher generation efficiency while maintaining or even better zero-shot task accuracy.
arXiv Detail & Related papers (2025-01-31T15:10:29Z) - Training Large Language Models to Reason in a Continuous Latent Space [84.5618790930725]
We introduce a new paradigm Coconut (Chain of Continuous Thought) to explore the potential of large language models (LLMs) reasoning in an unrestricted latent space.<n>Experiments show that Coconut can effectively augment the LLM on several reasoning tasks.<n>These findings demonstrate the promise of latent reasoning and offer valuable insights for future research.
arXiv Detail & Related papers (2024-12-09T18:55:56Z) - Markov Chain of Thought for Efficient Mathematical Reasoning [10.678633785012691]
Chain of Thought (CoT) of multi-step benefits from the logical structure of the reasoning steps and task-specific actions.<n>We conceptualize the standard multi-step CoT as a novel Markov Chain of Thought (MCoT)<n>Our MCoT aims to compress previous reasoning steps into a simplified question, enabling efficient next-step inference.
arXiv Detail & Related papers (2024-10-23T07:53:29Z) - LINC: A Neurosymbolic Approach for Logical Reasoning by Combining
Language Models with First-Order Logic Provers [60.009969929857704]
Logical reasoning is an important task for artificial intelligence with potential impacts on science, mathematics, and society.
In this work, we reformulating such tasks as modular neurosymbolic programming, which we call LINC.
We observe significant performance gains on FOLIO and a balanced subset of ProofWriter for three different models in nearly all experimental conditions we evaluate.
arXiv Detail & Related papers (2023-10-23T17:58:40Z) - Visual Chain of Thought: Bridging Logical Gaps with Multimodal
Infillings [61.04460792203266]
We introduce VCoT, a novel method that leverages chain-of-thought prompting with vision-language grounding to bridge the logical gaps within sequential data.
Our method uses visual guidance to generate synthetic multimodal infillings that add consistent and novel information to reduce the logical gaps for downstream tasks.
arXiv Detail & Related papers (2023-05-03T17:58:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.