ELIP: Enhanced Visual-Language Foundation Models for Image Retrieval
- URL: http://arxiv.org/abs/2502.15682v2
- Date: Thu, 27 Mar 2025 17:57:43 GMT
- Title: ELIP: Enhanced Visual-Language Foundation Models for Image Retrieval
- Authors: Guanqi Zhan, Yuanpei Liu, Kai Han, Weidi Xie, Andrew Zisserman,
- Abstract summary: We introduce a new framework that can boost the performance of large-scale pre-trained vision- curation models.<n>The approach, Enhanced Language-Image Pre-training (ELIP), uses the text query, via a simple mapping network, to predict a set of visual prompts.<n>ELIP can easily be applied to the commonly used CLIP, SigLIP and BLIP-2 networks.
- Score: 83.01358520910533
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The objective in this paper is to improve the performance of text-to-image retrieval. To this end, we introduce a new framework that can boost the performance of large-scale pre-trained vision-language models, so that they can be used for text-to-image re-ranking. The approach, Enhanced Language-Image Pre-training (ELIP), uses the text query, via a simple MLP mapping network, to predict a set of visual prompts to condition the ViT image encoding. ELIP can easily be applied to the commonly used CLIP, SigLIP and BLIP-2 networks. To train the architecture with limited computing resources, we develop a 'student friendly' best practice, involving global hard sample mining, and curation of a large-scale dataset. On the evaluation side, we set up two new out-of-distribution (OOD) benchmarks, Occluded COCO and ImageNet-R, to assess the zero-shot generalisation of the models to different domains. The results demonstrate that ELIP significantly boosts CLIP/SigLIP/SigLIP-2 text-to-image retrieval performance and outperforms BLIP-2 on several benchmarks, as well as providing an easy means to adapt to OOD datasets.
Related papers
- TULIP: Towards Unified Language-Image Pretraining [60.99500935831526]
We introduce T, an open-source, drop-in replacement for existing CLIP-like models.
Our method leverages generative data augmentation, enhanced image-image and text-text contrastive learning, and image/text reconstruction regularization to learn fine-grained visual features.
Our approach, scaling to over 1B parameters, outperforms existing state-of-the-art (SOTA) models across benchmarks.
arXiv Detail & Related papers (2025-03-19T17:58:57Z) - DiffCLIP: Few-shot Language-driven Multimodal Classifier [19.145645804307566]
DiffCLIP is a novel framework that extends Contrastive Language-Image Pretraining.
It conveys comprehensive language-driven semantic information for accurate classification of high-dimensional multimodal remote sensing images.
DiffCLIP achieves an overall accuracy improvement of 10.65% across three remote sensing datasets compared with CLIP.
arXiv Detail & Related papers (2024-12-10T02:21:39Z) - ITACLIP: Boosting Training-Free Semantic Segmentation with Image, Text, and Architectural Enhancements [0.6990493129893112]
Recent advances in Vision Language Models have reshaped the evaluation paradigm in computer vision tasks.
These foundational models, especially CLIP, have accelerated research in open-vocabulary computer vision tasks.
In this study, we enhance the semantic segmentation performance of CLIP by introducing new modules and modifications.
Our training-free method, ITACLIP, outperforms current state-of-the-art approaches on segmentation benchmarks.
arXiv Detail & Related papers (2024-11-18T20:31:38Z) - RWKV-CLIP: A Robust Vision-Language Representation Learner [31.501759213619646]
Contrastive Language-Image Pre-training (CLIP) has significantly improved performance in various vision-language tasks.
We introduce a diverse description generation framework that can leverage Large Language Models (LLMs) to synthesize and refine content from web-based texts, synthetic captions, and detection tags.
We propose RWKV-CLIP, the first RWKV-driven vision-language representation learning model that combines the effective parallel training of transformers with the efficient inference of RNNs.
arXiv Detail & Related papers (2024-06-11T06:10:46Z) - Fine-tuning CLIP Text Encoders with Two-step Paraphrasing [83.3736789315201]
We introduce a straightforward fine-tuning approach to enhance the representations of CLIP models for paraphrases.
Our model, which we call ParaCLIP, exhibits significant improvements over baseline CLIP models across various tasks.
arXiv Detail & Related papers (2024-02-23T06:11:50Z) - Composed Image Retrieval using Contrastive Learning and Task-oriented
CLIP-based Features [32.138956674478116]
Given a query composed of a reference image and a relative caption, the Composed Image Retrieval goal is to retrieve images visually similar to the reference one.
We use features from the OpenAI CLIP model to tackle the considered task.
We train a Combiner network that learns to combine the image-text features integrating the bimodal information.
arXiv Detail & Related papers (2023-08-22T15:03:16Z) - CLIP-ViP: Adapting Pre-trained Image-Text Model to Video-Language
Representation Alignment [146.3128011522151]
We propose a Omni Crossmodal Learning method equipped with a Video Proxy mechanism on the basis of CLIP, namely CLIP-ViP.
Our approach improves the performance of CLIP on video-text retrieval by a large margin.
Our model also achieves SOTA results on a variety of datasets, including MSR-VTT, DiDeMo, LSMDC, and ActivityNet.
arXiv Detail & Related papers (2022-09-14T05:47:02Z) - Prompt-based Learning for Unpaired Image Captioning [86.44188293709307]
Unpaired Image Captioning (UIC) has been developed to learn image descriptions from unaligned vision-language sample pairs.
Recent successes of Vision-Language Pre-Trained Models (VL-PTMs) have triggered the development of prompt-based learning.
We present in this paper a novel scheme based on prompt to train the UIC model, making best use of the powerful generalization ability.
arXiv Detail & Related papers (2022-05-26T03:13:43Z) - DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting [91.56988987393483]
We present a new framework for dense prediction by implicitly and explicitly leveraging the pre-trained knowledge from CLIP.
Specifically, we convert the original image-text matching problem in CLIP to a pixel-text matching problem and use the pixel-text score maps to guide the learning of dense prediction models.
Our method is model-agnostic, which can be applied to arbitrary dense prediction systems and various pre-trained visual backbones.
arXiv Detail & Related papers (2021-12-02T18:59:32Z) - Scaling Up Visual and Vision-Language Representation Learning With Noisy
Text Supervision [57.031588264841]
We leverage a noisy dataset of over one billion image alt-text pairs, obtained without expensive filtering or post-processing steps.
A simple dual-encoder architecture learns to align visual and language representations of the image and text pairs using a contrastive loss.
We show that the scale of our corpus can make up for its noise and leads to state-of-the-art representations even with such a simple learning scheme.
arXiv Detail & Related papers (2021-02-11T10:08:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.