論文の概要: Investigating a Model-Agnostic and Imputation-Free Approach for Irregularly-Sampled Multivariate Time-Series Modeling
- arxiv url: http://arxiv.org/abs/2502.15785v2
- Date: Wed, 03 Sep 2025 03:26:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-04 15:17:02.930121
- Title: Investigating a Model-Agnostic and Imputation-Free Approach for Irregularly-Sampled Multivariate Time-Series Modeling
- Title(参考訳): 不規則サンプリング型多変量時系列モデリングのためのモデル非依存およびインプットフリーアプローチの検討
- Authors: Abhilash Neog, Arka Daw, Sepideh Fatemi Khorasgani, Medha Sawhney, Aanish Pradhan, Mary E. Lofton, Bennett J. McAfee, Adrienne Breef-Pilz, Heather L. Wander, Dexter W Howard, Cayelan C. Carey, Paul Hanson, Anuj Karpatne,
- Abstract要約: MissTSM(Missing Feature-Aware Time Series Modeling)は、IMTSモデリングのための新しいモデルに依存しない、命令なしのアプローチである。
その結果,MissTSMはIMTSの他の手法と比較して競争力があることがわかった。
- 参考スコア(独自算出の注目度): 6.76884948948117
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modeling Irregularly-sampled and Multivariate Time Series (IMTS) is crucial across a variety of applications where different sets of variates may be missing at different time-steps due to sensor malfunctions or high data acquisition costs. Existing approaches for IMTS either consider a two-stage impute-then-model framework or involve specialized architectures specific to a particular model and task. We perform a series of experiments to derive novel insights about the performance of IMTS methods on a variety of semi-synthetic and real-world datasets for both classification and forecasting. We also introduce Missing Feature-aware Time Series Modeling (MissTSM) or MissTSM, a novel model-agnostic and imputation-free approach for IMTS modeling. We show that MissTSM shows competitive performance compared to other IMTS approaches, especially when the amount of missing values is large and the data lacks simplistic periodic structures - conditions common to real-world IMTS applications.
- Abstract(参考訳): 不規則なサンプルと多変量時系列(IMTS)のモデリングは、センサーの故障や高いデータ取得コストのために異なる時間ステップで異なる変数セットが欠落している様々なアプリケーションにおいて不可欠である。
既存のIMTSのアプローチでは、2段階のインプットモデルフレームワークを検討するか、特定のモデルやタスクに特有のアーキテクチャを扱うかのどちらかである。
我々は、分類と予測の両方のために、様々な半合成および実世界のデータセット上でIMTS法の性能に関する新しい知見を得るために、一連の実験を行った。
MissTSM(Missing Feature-Aware Time Series Modeling)やMissTSM(MissTSM)についても紹介する。
実世界のIMTSアプリケーションに共通する単純な周期構造が欠如している場合に,MissTSMが他のIMTS手法と比較して競合性能を示すことを示す。
関連論文リスト
- VISTA: Unsupervised 2D Temporal Dependency Representations for Time Series Anomaly Detection [42.694234312755285]
時系列異常検出(TSAD)は、ラベルのない時系列データの中で稀で潜在的に有害な事象を明らかにするのに不可欠である。
本稿では,これらの課題を克服するために,トレーニング不要で教師なしのTSADアルゴリズムであるVISTAを紹介する。
論文 参考訳(メタデータ) (2025-04-03T11:20:49Z) - General Time-series Model for Universal Knowledge Representation of Multivariate Time-Series data [61.163542597764796]
周波数領域で異なる時間粒度(または対応する周波数分解能)の時系列が異なる結合分布を示すことを示す。
時間領域と周波数領域の両方からタイムアウェア表現を学習するために,新しいFourierナレッジアテンション機構を提案する。
自己回帰的空白埋め込み事前学習フレームワークを時系列解析に初めて組み込み、生成タスクに依存しない事前学習戦略を実現する。
論文 参考訳(メタデータ) (2025-02-05T15:20:04Z) - BRATI: Bidirectional Recurrent Attention for Time-Series Imputation [0.14999444543328289]
時系列分析におけるデータの欠落は、ダウンストリームアプリケーションの信頼性に影響を及ぼす、重大な課題を引き起こす。
本稿では,多変量時系列計算のための新しい深層学習モデルであるBRATIを紹介する。
BRATIは時間的依存を処理し、長い時間的水平線と短い時間的水平線をまたいだ特徴相関を処理し、その逆の時間的方向で動作する2つの計算ブロックを利用する。
論文 参考訳(メタデータ) (2025-01-09T17:50:56Z) - DiffImp: Efficient Diffusion Model for Probabilistic Time Series Imputation with Bidirectional Mamba Backbone [6.428451261614519]
現在のDDPMに基づく確率的時系列計算手法は2種類の課題に直面している。
計算効率の良い状態空間モデルであるMambaをDDPMのバックボーンデノシングモジュールとして統合する。
提案手法では,複数のデータセット,異なるシナリオ,欠落率に対して,最先端の時系列計算結果が得られる。
論文 参考訳(メタデータ) (2024-10-17T08:48:52Z) - Scalable Numerical Embeddings for Multivariate Time Series: Enhancing Healthcare Data Representation Learning [6.635084843592727]
独立トークンとして各特徴値を扱う新しいフレームワークであるSCANEを提案する。
SCANEは、異なる機能埋め込みの特性を正規化し、スケーラブルな埋め込みメカニズムを通じて表現学習を強化する。
本研究は,MTSの精度の高い予測出力を実現するために,nUMerical eMbeddIng Transformer (SUMMIT) を開発した。
論文 参考訳(メタデータ) (2024-05-26T13:06:45Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Gait Recognition in the Wild with Multi-hop Temporal Switch [81.35245014397759]
野生での歩行認識は、より実践的な問題であり、マルチメディアとコンピュータビジョンのコミュニティの注目を集めています。
本稿では,現実のシーンにおける歩行パターンの効果的な時間的モデリングを実現するために,新しいマルチホップ時間スイッチ方式を提案する。
論文 参考訳(メタデータ) (2022-09-01T10:46:09Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - SAITS: Self-Attention-based Imputation for Time Series [6.321652307514677]
SAITSは時系列における値計算の欠落に対する自己注意機構に基づく新しい手法である。
斜めにマスキングされた2つの自己注意ブロックの重み付けされた組み合わせから、欠落した値を学ぶ。
テストの結果、SAITSは時系列計算タスクにおける最先端の手法を効率よく上回ることが示された。
論文 参考訳(メタデータ) (2022-02-17T08:40:42Z) - LIFE: Learning Individual Features for Multivariate Time Series
Prediction with Missing Values [71.52335136040664]
本稿では,MTS予測のための新しいパラダイムを提供する学習個人特徴(LIFE)フレームワークを提案する。
LIFEは、相関次元を補助情報として使用し、非相関次元からの干渉を欠落値で抑制することにより、予測のための信頼性の高い特徴を生成する。
3つの実世界のデータセットの実験は、既存の最先端モデルに対するLIFEの優位性を検証する。
論文 参考訳(メタデータ) (2021-09-30T04:53:24Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
本稿では,ビデオシーケンスの長期相関を効率的に学習できる高次LSTMモデルを提案する。
これは、時間をかけて畳み込み特徴を組み合わせることによって予測を行う、新しいテンソルトレインモジュールによって達成される。
この結果は,幅広いアプリケーションやデータセットにおいて,最先端のパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2020-02-21T05:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。