Signal Collapse in One-Shot Pruning: When Sparse Models Fail to Distinguish Neural Representations
- URL: http://arxiv.org/abs/2502.15790v1
- Date: Tue, 18 Feb 2025 15:47:33 GMT
- Title: Signal Collapse in One-Shot Pruning: When Sparse Models Fail to Distinguish Neural Representations
- Authors: Dhananjay Saikumar, Blesson Varghese,
- Abstract summary: We show that mitigating signal collapse, rather than optimizing weight selection, is key to improving accuracy of pruned networks.<n>We propose REFLOW that addresses signal collapse without updating trainable weights.<n>We restore ResNeXt101 accuracy from under 4.1% to 78.9% on ImageNet with only 20% of the weights retained.
- Score: 2.209921757303168
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural network pruning is essential for reducing model complexity to enable deployment on resource constrained hardware. While performance loss of pruned networks is often attributed to the removal of critical parameters, we identify signal collapse a reduction in activation variance across layers as the root cause. Existing one shot pruning methods focus on weight selection strategies and rely on computationally expensive second order approximations. In contrast, we demonstrate that mitigating signal collapse, rather than optimizing weight selection, is key to improving accuracy of pruned networks. We propose REFLOW that addresses signal collapse without updating trainable weights, revealing high quality sparse sub networks within the original parameter space. REFLOW enables magnitude pruning to achieve state of the art performance, restoring ResNeXt101 accuracy from under 4.1% to 78.9% on ImageNet with only 20% of the weights retained, surpassing state of the art approaches.
Related papers
- Pushing the Limits of Sparsity: A Bag of Tricks for Extreme Pruning [4.421875265386832]
Pruning of deep neural networks has been an effective technique for reducing model size while preserving most of the performance of dense networks.
Recent sparse learning methods have shown promising performance up to moderate sparsity levels such as 95% and 98%.
We propose a collection of techniques that enable the continuous learning of networks without accuracy collapse even at extreme sparsities.
arXiv Detail & Related papers (2024-11-20T18:54:53Z) - Accelerating Deep Neural Networks via Semi-Structured Activation
Sparsity [0.0]
Exploiting sparsity in the network's feature maps is one of the ways to reduce its inference latency.
We propose a solution to induce semi-structured activation sparsity exploitable through minor runtime modifications.
Our approach yields a speed improvement of $1.25 times$ with a minimal accuracy drop of $1.1%$ for the ResNet18 model on the ImageNet dataset.
arXiv Detail & Related papers (2023-09-12T22:28:53Z) - Compression with Bayesian Implicit Neural Representations [16.593537431810237]
We propose overfitting variational neural networks to the data and compressing an approximate posterior weight sample using relative entropy coding instead of quantizing and entropy coding it.
Experiments show that our method achieves strong performance on image and audio compression while retaining simplicity.
arXiv Detail & Related papers (2023-05-30T16:29:52Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - Effective Invertible Arbitrary Image Rescaling [77.46732646918936]
Invertible Neural Networks (INN) are able to increase upscaling accuracy significantly by optimizing the downscaling and upscaling cycle jointly.
A simple and effective invertible arbitrary rescaling network (IARN) is proposed to achieve arbitrary image rescaling by training only one model in this work.
It is shown to achieve a state-of-the-art (SOTA) performance in bidirectional arbitrary rescaling without compromising perceptual quality in LR outputs.
arXiv Detail & Related papers (2022-09-26T22:22:30Z) - WeightMom: Learning Sparse Networks using Iterative Momentum-based
pruning [0.0]
We propose a weight based pruning approach in which the weights are pruned gradually based on their momentum of the previous iterations.
We evaluate our approach on networks such as AlexNet, VGG16 and ResNet50 with image classification datasets such as CIFAR-10 and CIFAR-100.
arXiv Detail & Related papers (2022-08-11T07:13:59Z) - Sharpness-aware Quantization for Deep Neural Networks [45.150346855368]
Sharpness-Aware Quantization (SAQ) is a novel method to explore the effect of Sharpness-Aware Minimization (SAM) on model compression.
We show that SAQ improves the generalization performance of the quantized models, yielding the SOTA results in uniform quantization.
arXiv Detail & Related papers (2021-11-24T05:16:41Z) - Manifold Regularized Dynamic Network Pruning [102.24146031250034]
This paper proposes a new paradigm that dynamically removes redundant filters by embedding the manifold information of all instances into the space of pruned networks.
The effectiveness of the proposed method is verified on several benchmarks, which shows better performance in terms of both accuracy and computational cost.
arXiv Detail & Related papers (2021-03-10T03:59:03Z) - Hessian-Aware Pruning and Optimal Neural Implant [74.3282611517773]
Pruning is an effective method to reduce the memory footprint and FLOPs associated with neural network models.
We introduce a new Hessian Aware Pruning method coupled with a Neural Implant approach that uses second-order sensitivity as a metric for structured pruning.
arXiv Detail & Related papers (2021-01-22T04:08:03Z) - Enabling certification of verification-agnostic networks via
memory-efficient semidefinite programming [97.40955121478716]
We propose a first-order dual SDP algorithm that requires memory only linear in the total number of network activations.
We significantly improve L-inf verified robust accuracy from 1% to 88% and 6% to 40% respectively.
We also demonstrate tight verification of a quadratic stability specification for the decoder of a variational autoencoder.
arXiv Detail & Related papers (2020-10-22T12:32:29Z) - Compressive sensing with un-trained neural networks: Gradient descent
finds the smoothest approximation [60.80172153614544]
Un-trained convolutional neural networks have emerged as highly successful tools for image recovery and restoration.
We show that an un-trained convolutional neural network can approximately reconstruct signals and images that are sufficiently structured, from a near minimal number of random measurements.
arXiv Detail & Related papers (2020-05-07T15:57:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.