論文の概要: Getting SMARTER for Motion Planning in Autonomous Driving Systems
- arxiv url: http://arxiv.org/abs/2502.15824v1
- Date: Thu, 20 Feb 2025 03:51:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:52:58.059165
- Title: Getting SMARTER for Motion Planning in Autonomous Driving Systems
- Title(参考訳): 自律走行システムにおける運動計画のためのSMARTERの導入
- Authors: Montgomery Alban, Ehsan Ahmadi, Randy Goebel, Amir Rasouli,
- Abstract要約: 本稿では,第2世代の動作計画シミュレータSMARTS 2.0を紹介する。
新機能には、現実的なマップの統合、車両間通信、交通と歩行者のシミュレーション、さまざまなセンサーモデルが含まれる。
本稿では,様々な難易度の高いシナリオにおいて,計画アルゴリズムを評価するための新しいベンチマークスイートを提案する。
- 参考スコア(独自算出の注目度): 6.389340982597326
- License:
- Abstract: Motion planning is a fundamental problem in autonomous driving and perhaps the most challenging to comprehensively evaluate because of the associated risks and expenses of real-world deployment. Therefore, simulations play an important role in efficient development of planning algorithms. To be effective, simulations must be accurate and realistic, both in terms of dynamics and behavior modeling, and also highly customizable in order to accommodate a broad spectrum of research frameworks. In this paper, we introduce SMARTS 2.0, the second generation of our motion planning simulator which, in addition to being highly optimized for large-scale simulation, provides many new features, such as realistic map integration, vehicle-to-vehicle (V2V) communication, traffic and pedestrian simulation, and a broad variety of sensor models. Moreover, we present a novel benchmark suite for evaluating planning algorithms in various highly challenging scenarios, including interactive driving, such as turning at intersections, and adaptive driving, in which the task is to closely follow a lead vehicle without any explicit knowledge of its intention. Each scenario is characterized by a variety of traffic patterns and road structures. We further propose a series of common and task-specific metrics to effectively evaluate the performance of the planning algorithms. At the end, we evaluate common motion planning algorithms using the proposed benchmark and highlight the challenges the proposed scenarios impose. The new SMARTS 2.0 features and the benchmark are publicly available at github.com/huawei-noah/SMARTS.
- Abstract(参考訳): モーションプランニングは自動運転の基本的な問題であり、実際の展開のリスクと費用が伴うため、総合的に評価することが最も困難である。
したがって、シミュレーションは計画アルゴリズムの効率的な開発に重要な役割を果たしている。
効果的にするためには、シミュレーションはダイナミックスと行動モデリングの両方の観点から正確かつ現実的であり、また、幅広い研究フレームワークに対応するために高度にカスタマイズ可能である必要がある。
本稿では,大規模シミュレーションに高度に最適化された第2世代の動作計画シミュレータSMARTS 2.0を紹介し,現実的な地図統合,車車間通信(V2V),交通・歩行者シミュレーション,多種多様なセンサモデルなど,多くの新機能を提供する。
さらに,交差点の曲がり角や適応運転など,様々な難易度の高いシナリオにおいて,計画アルゴリズムを評価するための新しいベンチマークスイートを提案する。
それぞれのシナリオは、さまざまな交通パターンと道路構造によって特徴づけられる。
さらに、計画アルゴリズムの性能を効果的に評価するための、共通およびタスク固有の指標のシリーズを提案する。
最後に、提案したベンチマークを用いて、一般的な動き計画アルゴリズムを評価し、提案シナリオが課す課題を強調する。
新しいSMARTS 2.0とベンチマークはgithub.com/huawei-noah/SMARTSで公開されている。
関連論文リスト
- Bench4Merge: A Comprehensive Benchmark for Merging in Realistic Dense Traffic with Micro-Interactive Vehicles [20.832829903505296]
我々は,統合シナリオにおける動作計画能力を評価するためのベンチマークを開発する。
我々のアプローチには、微小な行動特性を持つ大規模データセットで訓練された他の車両が含まれる。
大規模な実験は、この評価ベンチマークの高度な性質を実証した。
論文 参考訳(メタデータ) (2024-10-21T11:35:33Z) - Solving Motion Planning Tasks with a Scalable Generative Model [15.858076912795621]
本稿では,運転シーンのダイナミクスを学習する生成モデルに基づく効率的な解を提案する。
我々の革新的なデザインは、モデルがフルオートレグレッシブモードとパーシャルオートレグレッシブモードの両方で動作できるようにする。
提案した生成モデルは,様々な動作計画タスクの基盤となる可能性がある。
論文 参考訳(メタデータ) (2024-07-03T03:57:05Z) - Planning with Adaptive World Models for Autonomous Driving [50.4439896514353]
運動プランナー(MP)は複雑な都市環境における安全なナビゲーションに不可欠である。
最近リリースされたMPベンチマークであるnuPlanは、クローズドループシミュレーションロジックで現実世界の駆動ログを拡張することで、この制限に対処している。
本稿では,モデル予測制御(MPC)ベースのプランナであるAdaptiveDriverを提案する。
論文 参考訳(メタデータ) (2024-06-15T18:53:45Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymaxは、マルチエージェントシーンにおける自動運転のための新しいデータ駆動シミュレータである。
TPU/GPUなどのハードウェアアクセラレータで完全に動作し、トレーニング用のグラフ内シミュレーションをサポートする。
我々は、一般的な模倣と強化学習アルゴリズムのスイートをベンチマークし、異なる設計決定に関するアブレーション研究を行った。
論文 参考訳(メタデータ) (2023-10-12T20:49:15Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
我々は,データ駆動型交通シミュレーションを世界モデルとして定式化できることを示した。
動作予測とエンドツーエンドの運転に基づくマルチエージェントポリシーであるTrafficBotsを紹介する。
オープンモーションデータセットの実験は、TrafficBotsが現実的なマルチエージェント動作をシミュレートできることを示している。
論文 参考訳(メタデータ) (2023-03-07T18:28:41Z) - Augmented Driver Behavior Models for High-Fidelity Simulation Study of
Crash Detection Algorithms [2.064612766965483]
人力車と自動車の両方を含むハイブリッド輸送システムのシミュレーションプラットフォームを提案する。
我々は、人間の運転タスクを分解し、大規模な交通シナリオをシミュレートするためのモジュラーアプローチを提供する。
我々は、大きな駆動データセットを分析し、異なる駆動特性を最もよく記述する表現的パラメータを抽出する。
論文 参考訳(メタデータ) (2022-08-10T19:59:16Z) - A Hierarchical Pedestrian Behavior Model to Generate Realistic Human
Behavior in Traffic Simulation [11.525073205608681]
本稿では,行動木を用いた階層的歩行者行動モデルを提案する。
私たちの作業の完全な実装は、シナリオ定義と実行エンジンであるGeoScenario Serverに統合されます。
提案モデルでは,実際の歩行者の軌跡を高精度に再現し,意思決定精度を98%以上とした。
論文 参考訳(メタデータ) (2022-06-01T02:04:38Z) - Generating Useful Accident-Prone Driving Scenarios via a Learned Traffic
Prior [135.78858513845233]
STRIVEは、特定のプランナーが衝突のような望ましくない振る舞いを発生させるような、困難なシナリオを自動的に生成する手法である。
シナリオの妥当性を維持するために、キーとなるアイデアは、グラフベースの条件付きVAEという形で、学習した交通運動モデルを活用することである。
その後の最適化は、シナリオの"解決"を見つけるために使用され、与えられたプランナーを改善するのに有効である。
論文 参考訳(メタデータ) (2021-12-09T18:03:27Z) - Deep Structured Reactive Planning [94.92994828905984]
自動運転のための新しいデータ駆動型リアクティブ計画目標を提案する。
本モデルは,非常に複雑な操作を成功させる上で,非反応性変種よりも優れることを示す。
論文 参考訳(メタデータ) (2021-01-18T01:43:36Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
リアル交通シミュレーションのためのマルチエージェント行動モデルであるTrafficSimを提案する。
特に、暗黙の潜在変数モデルを利用して、共同アクターポリシーをパラメータ化する。
TrafficSimは、多様なベースラインと比較して、より現実的で多様なトラフィックシナリオを生成します。
論文 参考訳(メタデータ) (2021-01-17T00:29:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。