Soft Token Attacks Cannot Reliably Audit Unlearning in Large Language Models
- URL: http://arxiv.org/abs/2502.15836v1
- Date: Thu, 20 Feb 2025 13:22:33 GMT
- Title: Soft Token Attacks Cannot Reliably Audit Unlearning in Large Language Models
- Authors: Haokun Chen, Sebastian Szyller, Weilin Xu, Nageen Himayat,
- Abstract summary: We show that soft token attacks (STAs) can successfully extract purportedly unlearned information from large language models (LLMs)<n>Our work highlights the need for better evaluation baselines, and more appropriate auditing tools for assessing the effectiveness of unlearning.
- Score: 5.807314706494602
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have become increasingly popular. Their emergent capabilities can be attributed to their massive training datasets. However, these datasets often contain undesirable or inappropriate content, e.g., harmful texts, personal information, and copyrighted material. This has promoted research into machine unlearning that aims to remove information from trained models. In particular, approximate unlearning seeks to achieve information removal by strategically editing the model rather than complete model retraining. Recent work has shown that soft token attacks (STA) can successfully extract purportedly unlearned information from LLMs, thereby exposing limitations in current unlearning methodologies. In this work, we reveal that STAs are an inadequate tool for auditing unlearning. Through systematic evaluation on common unlearning benchmarks (Who Is Harry Potter? and TOFU), we demonstrate that such attacks can elicit any information from the LLM, regardless of (1) the deployed unlearning algorithm, and (2) whether the queried content was originally present in the training corpus. Furthermore, we show that STA with just a few soft tokens (1-10) can elicit random strings over 400-characters long. Thus showing that STAs are too powerful, and misrepresent the effectiveness of the unlearning methods. Our work highlights the need for better evaluation baselines, and more appropriate auditing tools for assessing the effectiveness of unlearning in LLMs.
Related papers
- Information-Guided Identification of Training Data Imprint in (Proprietary) Large Language Models [52.439289085318634]
We show how to identify training data known to proprietary large language models (LLMs) by using information-guided probes.
Our work builds on a key observation: text passages with high surprisal are good search material for memorization probes.
arXiv Detail & Related papers (2025-03-15T10:19:15Z) - Does Unlearning Truly Unlearn? A Black Box Evaluation of LLM Unlearning Methods [1.9799527196428242]
Large language model unlearning aims to remove harmful information that LLMs have learnt to prevent their use for malicious purposes.<n>We show that unlearning has a notable impact on general model capabilities.<n>We show that doing 5-shot prompting or rephrasing the question in simple ways can lead to an over ten-fold increase in accuracy on unlearning benchmarks.
arXiv Detail & Related papers (2024-11-18T22:31:17Z) - Extracting Unlearned Information from LLMs with Activation Steering [46.16882599881247]
Unlearning has emerged as a solution to remove sensitive knowledge from models after training.
We propose activation steering as a method for exact information retrieval from unlearned models.
Our results demonstrate that exact information retrieval from unlearned models is possible, highlighting a severe vulnerability of current unlearning techniques.
arXiv Detail & Related papers (2024-11-04T21:42:56Z) - Catastrophic Failure of LLM Unlearning via Quantization [36.524827594501495]
We show that applying quantization to models that have undergone unlearning can restore the "forgotten" information.<n>We find that for unlearning methods with utility constraints, the unlearned model retains an average of 21% of the intended forgotten knowledge in full precision.
arXiv Detail & Related papers (2024-10-21T19:28:37Z) - A Closer Look at Machine Unlearning for Large Language Models [46.245404272612795]
Large language models (LLMs) may memorize sensitive or copyrighted content, raising privacy and legal concerns.
We discuss several issues in machine unlearning for LLMs and provide our insights on possible approaches.
arXiv Detail & Related papers (2024-10-10T16:56:05Z) - MUSE: Machine Unlearning Six-Way Evaluation for Language Models [109.76505405962783]
Language models (LMs) are trained on vast amounts of text data, which may include private and copyrighted content.
We propose MUSE, a comprehensive machine unlearning evaluation benchmark.
We benchmark how effectively eight popular unlearning algorithms can unlearn Harry Potter books and news articles.
arXiv Detail & Related papers (2024-07-08T23:47:29Z) - Unlearning or Obfuscating? Jogging the Memory of Unlearned LLMs via Benign Relearning [37.061187080745654]
We show that existing approaches for unlearning in LLMs are surprisingly susceptible to a simple set of $textitbenign relearning attacks.
With access to only a small and potentially loosely related set of data, we find that we can ''jog'' the memory of unlearned models to reverse the effects of unlearning.
arXiv Detail & Related papers (2024-06-19T09:03:21Z) - Offset Unlearning for Large Language Models [49.851093293780615]
Unlearning has emerged as a potential remedy for Large Language Models affected by problematic training data.
We propose $delta$-unlearning, an offset unlearning framework for black-box LLMs.
Experiments demonstrate that $delta$-unlearning can effectively unlearn target data while maintaining similar or even stronger performance on general out-of-forget-scope tasks.
arXiv Detail & Related papers (2024-04-17T03:39:51Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
Large Language Models (LLMs) are foundational to AI advancements.
LLMs pose risks by potentially memorizing and disseminating sensitive, biased, or copyrighted information.
Machine unlearning emerges as a cutting-edge solution to mitigate these concerns.
arXiv Detail & Related papers (2024-03-23T09:26:15Z) - TOFU: A Task of Fictitious Unlearning for LLMs [99.92305790945507]
Large language models trained on massive corpora of data from the web can reproduce sensitive or private data raising both legal and ethical concerns.
Unlearning, or tuning models to forget information present in their training data, provides us with a way to protect private data after training.
We present TOFU, a benchmark aimed at helping deepen our understanding of unlearning.
arXiv Detail & Related papers (2024-01-11T18:57:12Z) - Language models are weak learners [71.33837923104808]
We show that prompt-based large language models can operate effectively as weak learners.
We incorporate these models into a boosting approach, which can leverage the knowledge within the model to outperform traditional tree-based boosting.
Results illustrate the potential for prompt-based LLMs to function not just as few-shot learners themselves, but as components of larger machine learning pipelines.
arXiv Detail & Related papers (2023-06-25T02:39:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.