AI Governance InternationaL Evaluation Index (AGILE Index)
- URL: http://arxiv.org/abs/2502.15859v3
- Date: Tue, 04 Mar 2025 07:10:54 GMT
- Title: AI Governance InternationaL Evaluation Index (AGILE Index)
- Authors: Yi Zeng, Enmeng Lu, Xin Guan, Cunqing Huangfu, Zizhe Ruan, Ammar Younas, Kang Sun, Xuan Tang, Yuwei Wang, Hongjie Suo, Dongqi Liang, Zhengqiang Han, Aorigele Bao, Xiaoyang Guo, Jin Wang, Jiawei Xie, Yao Liang,
- Abstract summary: The rapid advancement of Artificial Intelligence (AI) technology is profoundly transforming human society.<n>Since 2022, the extensive deployment of generative AI, particularly large language models, marked a new phase in AI governance.<n>As consensus on international governance continues to be established and put into action, the practical importance of conducting a global assessment of the state of AI governance is progressively coming to light.<n>The inaugural evaluation of the AGILE Index commences with an exploration of four foundational pillars: the development level of AI, the AI governance environment, the AI governance instruments, and the AI governance effectiveness.
- Score: 15.589972522113754
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The rapid advancement of Artificial Intelligence (AI) technology is profoundly transforming human society and concurrently presenting a series of ethical, legal, and social issues. The effective governance of AI has become a crucial global concern. Since 2022, the extensive deployment of generative AI, particularly large language models, marked a new phase in AI governance. Continuous efforts are being made by the international community in actively addressing the novel challenges posed by these AI developments. As consensus on international governance continues to be established and put into action, the practical importance of conducting a global assessment of the state of AI governance is progressively coming to light. In this context, we initiated the development of the AI Governance InternationaL Evaluation Index (AGILE Index). Adhering to the design principle, "the level of governance should match the level of development," the inaugural evaluation of the AGILE Index commences with an exploration of four foundational pillars: the development level of AI, the AI governance environment, the AI governance instruments, and the AI governance effectiveness. It covers 39 indicators across 18 dimensions to comprehensively assess the AI governance level of 14 representative countries globally. The index is utilized to delve into the status of AI governance to date in 14 countries for the first batch of evaluation. The aim is to depict the current state of AI governance in these countries through data scoring, assist them in identifying their governance stage and uncovering governance issues, and ultimately offer insights for the enhancement of their AI governance systems.
Related papers
- The AI Pentad, the CHARME$^{2}$D Model, and an Assessment of Current-State AI Regulation [5.231576332164012]
This paper aims to establish a unifying model for AI regulation from the perspective of core AI components.
We first introduce the AI Pentad, which comprises the five essential components of AI.
We then review AI regulatory enablers, including AI registration and disclosure, AI monitoring, and AI enforcement mechanisms.
arXiv Detail & Related papers (2025-03-08T22:58:41Z) - The Fundamental Rights Impact Assessment (FRIA) in the AI Act: Roots, legal obligations and key elements for a model template [55.2480439325792]
Article aims to fill existing gaps in the theoretical and methodological elaboration of the Fundamental Rights Impact Assessment (FRIA)
This article outlines the main building blocks of a model template for the FRIA.
It can serve as a blueprint for other national and international regulatory initiatives to ensure that AI is fully consistent with human rights.
arXiv Detail & Related papers (2024-11-07T11:55:55Z) - AI, Global Governance, and Digital Sovereignty [1.3976439685325095]
We argue that AI systems will embed in global governance to create dueling dynamics of public/private cooperation and contestation.
We conclude by sketching future directions for IR research on AI and global governance.
arXiv Detail & Related papers (2024-10-23T00:05:33Z) - AI Governance in Higher Education: Case Studies of Guidance at Big Ten Universities [14.26619701452836]
Generative AI has drawn significant attention from stakeholders in higher education.
It simultaneously poses challenges to academic integrity and leads to ethical issues.
Leading universities have already published guidelines on Generative AI.
This study focuses on strategies for responsible AI governance as demonstrated in these guidelines.
arXiv Detail & Related papers (2024-09-03T16:06:45Z) - Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
General purpose AI seems to have lowered the barriers for the public to use AI and harness its power.
We introduce PARTICIP-AI, a framework for laypeople to speculate and assess AI use cases and their impacts.
arXiv Detail & Related papers (2024-03-21T19:12:37Z) - Towards a Privacy and Security-Aware Framework for Ethical AI: Guiding
the Development and Assessment of AI Systems [0.0]
This study conducts a systematic literature review spanning the years 2020 to 2023.
Through the synthesis of knowledge extracted from the SLR, this study presents a conceptual framework tailored for privacy- and security-aware AI systems.
arXiv Detail & Related papers (2024-03-13T15:39:57Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
"Responsible AI" emphasizes the critical nature of addressing biases within the development of a corporate culture.
This thesis is structured around three fundamental pillars: understanding bias, mitigating bias, and accounting for bias.
In line with open-source principles, we have released Bias On Demand and FairView as accessible Python packages.
arXiv Detail & Related papers (2024-01-13T14:07:09Z) - FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare [73.78776682247187]
Concerns have been raised about the technical, clinical, ethical and legal risks associated with medical AI.
This work describes the FUTURE-AI guideline as the first international consensus framework for guiding the development and deployment of trustworthy AI tools in healthcare.
arXiv Detail & Related papers (2023-08-11T10:49:05Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
This interdisciplinary position paper considers various concerns surrounding fairness and discrimination in AI, and discusses how AI regulations address them.
We first look at AI and fairness through the lenses of law, (AI) industry, sociotechnology, and (moral) philosophy, and present various perspectives.
We identify and propose the roles AI Regulation should take to make the endeavor of the AI Act a success in terms of AI fairness concerns.
arXiv Detail & Related papers (2022-06-08T12:32:08Z) - Putting AI Ethics into Practice: The Hourglass Model of Organizational
AI Governance [0.0]
We present an AI governance framework, which targets organizations that develop and use AI systems.
The framework is designed to help organizations deploying AI systems translate ethical AI principles into practice.
arXiv Detail & Related papers (2022-06-01T08:55:27Z) - The Different Faces of AI Ethics Across the World: A
Principle-Implementation Gap Analysis [12.031113181911627]
Artificial Intelligence (AI) is transforming our daily life with several applications in healthcare, space exploration, banking and finance.
These rapid progresses in AI have brought increasing attention to the potential impacts of AI technologies on society.
Several ethical principles have been released by governments, national and international organisations.
These principles outline high-level precepts to guide the ethical development, deployment, and governance of AI.
arXiv Detail & Related papers (2022-05-12T22:41:08Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.