論文の概要: Strategic priorities for transformative progress in advancing biology with proteomics and artificial intelligence
- arxiv url: http://arxiv.org/abs/2502.15867v1
- Date: Fri, 21 Feb 2025 13:20:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:52:57.027439
- Title: Strategic priorities for transformative progress in advancing biology with proteomics and artificial intelligence
- Title(参考訳): プロテオミクスと人工知能を用いた進化生物学における進化的進化のための戦略的優先順位
- Authors: Yingying Sun, Jun A, Zhiwei Liu, Rui Sun, Liujia Qian, Samuel H. Payne, Wout Bittremieux, Markus Ralser, Chen Li, Yi Chen, Zhen Dong, Yasset Perez-Riverol, Asif Khan, Chris Sander, Ruedi Aebersold, Juan Antonio Vizcaíno, Jonathan R Krieger, Jianhua Yao, Han Wen, Linfeng Zhang, Yunping Zhu, Yue Xuan, Benjamin Boyang Sun, Liang Qiao, Henning Hermjakob, Haixu Tang, Huanhuan Gao, Yamin Deng, Qing Zhong, Cheng Chang, Nuno Bandeira, Ming Li, Weinan E, Siqi Sun, Yuedong Yang, Gilbert S. Omenn, Yue Zhang, Ping Xu, Yan Fu, Xiaowen Liu, Christopher M. Overall, Yu Wang, Eric W. Deutsch, Luonan Chen, Jürgen Cox, Vadim Demichev, Fuchu He, Jiaxing Huang, Huilin Jin, Chao Liu, Nan Li, Zhongzhi Luan, Jiangning Song, Kaicheng Yu, Wanggen Wan, Tai Wang, Kang Zhang, Le Zhang, Peter A. Bell, Matthias Mann, Bing Zhang, Tiannan Guo,
- Abstract要約: データ分析から新たな生物学的洞察に至るまで、AIがイノベーションを推進している重要な領域を強調します。
その中には、データ生成、共有、分析のためのAIフレンドリーなエコシステムの開発も含まれる。
- 参考スコア(独自算出の注目度): 54.14779179869007
- License:
- Abstract: Artificial intelligence (AI) is transforming scientific research, including proteomics. Advances in mass spectrometry (MS)-based proteomics data quality, diversity, and scale, combined with groundbreaking AI techniques, are unlocking new challenges and opportunities in biological discovery. Here, we highlight key areas where AI is driving innovation, from data analysis to new biological insights. These include developing an AI-friendly ecosystem for proteomics data generation, sharing, and analysis; improving peptide and protein identification and quantification; characterizing protein-protein interactions and protein complexes; advancing spatial and perturbation proteomics; integrating multi-omics data; and ultimately enabling AI-empowered virtual cells.
- Abstract(参考訳): 人工知能(AI)は、プロテオミクスを含む科学研究を変革している。
質量分析(MS)に基づくデータ品質、多様性、スケールの進歩と画期的なAI技術が組み合わさって、生物発見における新たな課題と機会を解き放っている。
ここでは、データ分析から新しい生物学的洞察に至るまで、AIがイノベーションを推進している重要な領域を強調します。
その中には、プロテオミクスデータの生成、共有、分析のためのAIフレンドリーなエコシステムの開発、ペプチドとタンパク質の同定と定量化の改善、タンパク質とタンパク質の相互作用とタンパク質複合体の特徴づけ、空間的および摂動プロテオミクスの進展、マルチオミクスデータの統合、そして最終的にはAIを利用した仮想細胞の実現が含まれる。
関連論文リスト
- Computational Protein Science in the Era of Large Language Models (LLMs) [54.35488233989787]
計算タンパク質科学(Computational protein science)は、タンパク質配列構造-機能パラダイムにおける知識を明らかにすること、および応用を開発することを目的としている。
最近、言語モデル (Language Models, PLM) は、前例のない言語処理と一般化能力のために、AIのマイルストーンとして登場した。
論文 参考訳(メタデータ) (2025-01-17T16:21:18Z) - SFM-Protein: Integrative Co-evolutionary Pre-training for Advanced Protein Sequence Representation [97.99658944212675]
タンパク質基盤モデルのための新しい事前学習戦略を導入する。
アミノ酸残基間の相互作用を強調し、短距離および長距離の共進化的特徴の抽出を強化する。
大規模タンパク質配列データセットを用いて学習し,より優れた一般化能力を示す。
論文 参考訳(メタデータ) (2024-10-31T15:22:03Z) - Long-context Protein Language Model [76.95505296417866]
言語モデル(LM)の自己教師による訓練は、有意義な表現の学習や創薬設計において、タンパク質配列に大きな成功を収めている。
ほとんどのタンパク質LMは、短い文脈長を持つ個々のタンパク質に基づいて訓練されたトランスフォーマーアーキテクチャに基づいている。
そこで我々は,選択的構造化状態空間モデルから構築した代替のタンパク質LMアーキテクチャであるBiMamba-Sに基づくLC-PLMを提案する。
また、第2段階のトレーニングのために、タンパク質-タンパク質相互作用グラフの文脈化を行うLC-PLM-Gも導入した。
論文 参考訳(メタデータ) (2024-10-29T16:43:28Z) - Beyond ESM2: Graph-Enhanced Protein Sequence Modeling with Efficient Clustering [24.415612744612773]
タンパク質は生命の過程に必須であり、進化と多様性を支えている。
シークエンシング技術の進歩により数百万のタンパク質が明らかにされ、生物学的分析とAI開発のための高度な事前学習されたタンパク質モデルの必要性が強調されている。
FacebookのESM2は、これまでで最も先進的なタンパク質言語モデルであり、教師なし学習にマスク付き予測タスクを活用し、顕著な生化学的精度でアミノ酸表現を作成する。
しかし、機能的なタンパク質の洞察の提供に欠けており、表現の質を高める機会を示唆している。
本研究は,タンパク質ファミリー分類をESM2のトレーニングに組み込むことにより,このギャップに対処する。
論文 参考訳(メタデータ) (2024-04-24T11:09:43Z) - Efficiently Predicting Protein Stability Changes Upon Single-point
Mutation with Large Language Models [51.57843608615827]
タンパク質の熱安定性を正確に予測する能力は、様々なサブフィールドや生化学への応用において重要である。
タンパク質配列と構造的特徴を統合したESMによる効率的なアプローチを導入し, 単一点突然変異によるタンパク質の熱安定性変化を予測する。
論文 参考訳(メタデータ) (2023-12-07T03:25:49Z) - Growing ecosystem of deep learning methods for modeling
protein$\unicode{x2013}$protein interactions [0.0]
本稿では,タンパク質相互作用をモデル化する深層学習手法のエコシステムを論じる。
新たな相互作用を発見し、物理的なメカニズムを調節し、エンジニアのバインダーがそれらの機能を解き放つ機会がある。
論文 参考訳(メタデータ) (2023-10-10T15:53:27Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
この研究は、薬物標的タンパク質の構造的アンサンブルに基づいて生成ニューラルネットワークを学習することに焦点を当てている。
モデル課題は、様々な薬物分子に結合したタンパク質の構造的変動を特徴付けることである。
その結果,我々の幾何学的学習に基づく手法は,複雑な構造変化を生成するための精度と効率の両方を享受できることがわかった。
論文 参考訳(メタデータ) (2022-05-20T19:38:00Z) - Subcellular Protein Localisation in the Human Protein Atlas using
Ensembles of Diverse Deep Architectures [11.41081495236219]
細胞内タンパク質の視覚的局在の自動化は、健康と病気における細胞機能の理解を加速させる。
i)細胞アノテーションの品質の自動改善、(ii)不均衡でノイズの多いデータをサポートする新しい畳み込みニューラルネットワーク(CNN)アーキテクチャ、(iii)多種多様な機械学習モデルの選択と融合という3つの重要な側面に対処することで、このギャップを狭めることができることを示す。
論文 参考訳(メタデータ) (2022-05-19T20:28:56Z) - Artificial intelligence techniques for integrative structural biology of
intrinsically disordered proteins [0.3735965959270874]
内因性障害タンパク質(IDP)の集積構造生物学における人工知能(AI)と機械学習(ML)技術の最近の展開について概説する。
IDPは、特定の結合パートナーに応答してコンフォメーションを適応し、生物学的シグナル伝達、自己組織化、分節化といった、多様で複雑な細胞機能を媒介する、伝統的なタンパク質構造-機能パラダイムに挑戦する。
スケーラブルな統計的推論技術は、複数の実験手法から得られた情報とシミュレーションを効果的に統合し、これらの現象の原子学的詳細にアクセスすることができると仮定する。
論文 参考訳(メタデータ) (2020-12-01T23:10:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。