論文の概要: Human Guided Learning of Transparent Regression Models
- arxiv url: http://arxiv.org/abs/2502.15992v1
- Date: Fri, 21 Feb 2025 23:15:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:53:23.505801
- Title: Human Guided Learning of Transparent Regression Models
- Title(参考訳): 透明回帰モデルのヒューマンガイド学習
- Authors: Lukas Pensel, Stefan Kramer,
- Abstract要約: 置換回帰に対するHIL(Human-in-the-loop)アプローチを提案する。
このモデルは、単純な人間に理解可能な制約を組み込んだ勾配強化回帰モデルである。
このアプローチであるHuGuRは、人間がこのような透明な回帰モデルの検索空間を探索することを可能にする。
- 参考スコア(独自算出の注目度): 4.592493651895646
- License:
- Abstract: We present a human-in-the-loop (HIL) approach to permutation regression, the novel task of predicting a continuous value for a given ordering of items. The model is a gradient boosted regression model that incorporates simple human-understandable constraints of the form x < y, i.e. item x has to be before item y, as binary features. The approach, HuGuR (Human Guided Regression), lets a human explore the search space of such transparent regression models. Interacting with HuGuR, users can add, remove, and refine order constraints interactively, while the coefficients are calculated on the fly. We evaluate HuGuR in a user study and compare the performance of user-built models with multiple baselines on 9 data sets. The results show that the user-built models outperform the compared methods on small data sets and in general perform on par with the other methods, while being in principle understandable for humans. On larger datasets from the same domain, machine-induced models begin to outperform the user-built models. Further work will study the trust users have in models when constructed by themselves and how the scheme can be transferred to other pattern domains, such as strings, sequences, trees, or graphs.
- Abstract(参考訳): 本稿では,各項目の順序を連続的に予測する新しいタスクである置換回帰に対するHIL(Human-in-the-loop)アプローチを提案する。
このモデルは勾配強化回帰モデルであり、x < y, すなわち、アイテム x はアイテム y の前に二項的特徴として持たなければならないという単純な人間の理解可能な制約を組み込む。
このアプローチであるHuGuR(Human Guided Regression)は、人間がこのような透明な回帰モデルの検索空間を探索することを可能にする。
HuGuRと対話することで、ユーザは、リアルタイムで係数が計算される間、対話的に順序制約を追加、削除、洗練することができる。
我々はユーザスタディにおいてHuGuRを評価し、ユーザ構築モデルの性能を9つのデータセット上の複数のベースラインと比較した。
その結果, ユーザ構築モデルでは, 小さなデータセット上で比較した手法よりも優れており, 一般的には他の手法と同等に動作し, 原則として人間には理解しやすいことがわかった。
同じドメインからのより大きなデータセットでは、マシンによるモデルが、ユーザ構築モデルを上回っ始めます。
さらに研究は、ユーザが自身で構築したモデルにおける信頼度や、文字列、シーケンス、ツリー、グラフなどの他のパターンドメインへのスキームの転送方法についても検討する。
関連論文リスト
- Self-Consuming Generative Models with Curated Data Provably Optimize Human Preferences [20.629333587044012]
本研究では,データキュレーションが生成モデルの反復的再学習に与える影響について検討する。
報奨モデルに従ってデータをキュレートすると、反復的再訓練手順の期待報酬が最大になることを示す。
論文 参考訳(メタデータ) (2024-06-12T21:28:28Z) - Beyond Human Data: Scaling Self-Training for Problem-Solving with Language Models [115.501751261878]
人為的なデータに基づく微調整言語モデル(LM)が普及している。
我々は、スカラーフィードバックにアクセス可能なタスクにおいて、人間のデータを超えることができるかどうか検討する。
ReST$EM$はモデルサイズに好適にスケールし、人間のデータのみによる微調整を大幅に上回っていることがわかった。
論文 参考訳(メタデータ) (2023-12-11T18:17:43Z) - Analysis of Interpolating Regression Models and the Double Descent
Phenomenon [3.883460584034765]
ノイズの多いトレーニングデータを補間するモデルは、一般化に乏しいと一般的に推測されている。
得られた最良のモデルは過度にパラメータ化され、テストエラーはモデル順序が増加するにつれて二重降下挙動を示す。
回帰行列の最小特異値の振舞いに基づいて、テスト誤差のピーク位置と二重降下形状をモデル順序の関数として説明する。
論文 参考訳(メタデータ) (2023-04-17T09:44:33Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
微調整された事前学習言語モデルは、下流のNLPモデルを構築するための主要なパラダイムとなっている。
これは、より優れた単一モデルを生み出すために、個々のモデル間で知識を融合させる障壁を生み出します。
パラメータ空間のモデルをマージするデータレス知識融合法を提案する。
論文 参考訳(メタデータ) (2022-12-19T20:46:43Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
我々は,観測されていない特徴分布を最大エントロピー仮説で近似することにより,ロジスティック回帰と類似した新しいモデルが,集約データからのみ学習されることを示す。
我々は、この方法で学習したモデルが、完全な非凝集データでトレーニングされたロジスティックモデルに匹敵するパフォーマンスを達成することができるという、いくつかの公開データセットに関する実証的な証拠を提示する。
論文 参考訳(メタデータ) (2022-10-05T09:17:27Z) - X-model: Improving Data Efficiency in Deep Learning with A Minimax Model [78.55482897452417]
ディープラーニングにおける分類と回帰設定の両面でのデータ効率の向上を目標とする。
両世界の力を生かすために,我々は新しいX-モデルを提案する。
X-モデルは、特徴抽出器とタスク固有のヘッドの間でミニマックスゲームを行う。
論文 参考訳(メタデータ) (2021-10-09T13:56:48Z) - Regression Bugs Are In Your Model! Measuring, Reducing and Analyzing
Regressions In NLP Model Updates [68.09049111171862]
この研究は、NLPモデル更新における回帰エラーの定量化、低減、分析に重点を置いている。
回帰フリーモデル更新を制約付き最適化問題に定式化する。
モデルアンサンブルが回帰を減らす方法を実証的に分析します。
論文 参考訳(メタデータ) (2021-05-07T03:33:00Z) - Robust priors for regularized regression [12.945710636153537]
尾根回帰のような罰則化された回帰アプローチは0に向かって縮小するが、0重みは通常は意味のある先行ではない。
人間が使用する単純で堅牢な決定にインスパイアされた私たちは、ペナル化された回帰モデルのための非ゼロの事前計算を構築しました。
頑丈な先行モデルでは、最悪のパフォーマンスに優れていた。
論文 参考訳(メタデータ) (2020-10-06T10:43:14Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
本稿では,強化学習目標を直接最適化し,期待される報酬を最大化するための新しいアプローチを提案する。
提案手法は、ユーザ定義プロパティを持つ分子の生成と、所定の目標値を評価する短いピソン表現の同定という2つのタスクで検証する。
論文 参考訳(メタデータ) (2020-10-05T20:03:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。