Exact Recovery of Sparse Binary Vectors from Generalized Linear Measurements
- URL: http://arxiv.org/abs/2502.16008v1
- Date: Fri, 21 Feb 2025 23:46:24 GMT
- Title: Exact Recovery of Sparse Binary Vectors from Generalized Linear Measurements
- Authors: Arya Mazumdar, Neha Sangwan,
- Abstract summary: We analyze the linear estimation algorithm and show information theoretic lower bounds on the number of required measurements.<n>For noisy one bit quantized linear measurements, we obtain a sample complexity of $O((k+sigma2)logn)$, where $sigma2$ is the noise variance.<n>We also obtain tight sample complexity characterization for logistic regression.
- Score: 15.85925794442426
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of exact recovery of a $k$-sparse binary vector from generalized linear measurements (such as logistic regression). We analyze the linear estimation algorithm (Plan, Vershynin, Yudovina, 2017), and also show information theoretic lower bounds on the number of required measurements. As a consequence of our results, for noisy one bit quantized linear measurements ($\mathsf{1bCSbinary}$), we obtain a sample complexity of $O((k+\sigma^2)\log{n})$, where $\sigma^2$ is the noise variance. This is shown to be optimal due to the information theoretic lower bound. We also obtain tight sample complexity characterization for logistic regression. Since $\mathsf{1bCSbinary}$ is a strictly harder problem than noisy linear measurements ($\mathsf{SparseLinearReg}$) because of added quantization, the same sample complexity is achievable for $\mathsf{SparseLinearReg}$. While this sample complexity can be obtained via the popular lasso algorithm, linear estimation is computationally more efficient. Our lower bound holds for any set of measurements for $\mathsf{SparseLinearReg}$, (similar bound was known for Gaussian measurement matrices) and is closely matched by the maximum-likelihood upper bound. For $\mathsf{SparseLinearReg}$, it was conjectured in Gamarnik and Zadik, 2017 that there is a statistical-computational gap and the number of measurements should be at least $(2k+\sigma^2)\log{n}$ for efficient algorithms to exist. It is worth noting that our results imply that there is no such statistical-computational gap for $\mathsf{1bCSbinary}$ and logistic regression.
Related papers
- Dimension-free Private Mean Estimation for Anisotropic Distributions [55.86374912608193]
Previous private estimators on distributions over $mathRd suffer from a curse of dimensionality.
We present an algorithm whose sample complexity has improved dependence on dimension.
arXiv Detail & Related papers (2024-11-01T17:59:53Z) - Iterative thresholding for non-linear learning in the strong $\varepsilon$-contamination model [3.309767076331365]
We derive approximation bounds for learning single neuron models using thresholded descent.
We also study the linear regression problem, where $sigma(mathbfx) = mathbfx$.
arXiv Detail & Related papers (2024-09-05T16:59:56Z) - Simple and Nearly-Optimal Sampling for Rank-1 Tensor Completion via Gauss-Jordan [49.1574468325115]
We revisit the sample and computational complexity of completing a rank-1 tensor in $otimes_i=1N mathbbRd$.
We present a characterization of the problem which admits an algorithm amounting to Gauss-Jordan on a pair of random linear systems.
arXiv Detail & Related papers (2024-08-10T04:26:19Z) - Computational-Statistical Gaps for Improper Learning in Sparse Linear Regression [4.396860522241307]
We show that an efficient learning algorithm for sparse linear regression can be used to solve sparse PCA problems with a negative spike.
We complement our reduction with low-degree and statistical query lower bounds for the sparse problems from which we reduce.
arXiv Detail & Related papers (2024-02-21T19:55:01Z) - Near-Optimal Bounds for Learning Gaussian Halfspaces with Random
Classification Noise [50.64137465792738]
We show that any efficient SQ algorithm for the problem requires sample complexity at least $Omega(d1/2/(maxp, epsilon)2)$.
Our lower bound suggests that this quadratic dependence on $1/epsilon$ is inherent for efficient algorithms.
arXiv Detail & Related papers (2023-07-13T18:59:28Z) - Statistical-Computational Tradeoffs in Mixed Sparse Linear Regression [20.00109111254507]
We show that the problem suffers from a $frackSNR2$-to-$frack2SNR2$ statistical-to-computational gap.
We also analyze a simple thresholding algorithm which, outside of the narrow regime where the problem is hard, solves the associated mixed regression detection problem.
arXiv Detail & Related papers (2023-03-03T18:03:49Z) - Sample Complexity Bounds for Learning High-dimensional Simplices in
Noisy Regimes [5.526935605535376]
We find a sample complexity bound for learning a simplex from noisy samples.
We show that as long as $mathrmSNRgeOmegaleft(K1/2right)$, the sample complexity of the noisy regime has the same order to that of the noiseless case.
arXiv Detail & Related papers (2022-09-09T23:35:25Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
We study a function of the form $mathbfxmapstosigma(mathbfwcdotmathbfx)$ for monotone activations.
The goal of the learner is to output a hypothesis vector $mathbfw$ that $F(mathbbw)=C, epsilon$ with high probability.
arXiv Detail & Related papers (2022-06-17T17:55:43Z) - Robust Sparse Mean Estimation via Sum of Squares [42.526664955704746]
We study the problem of high-dimensional sparse mean estimation in the presence of an $epsilon$-fraction of adversarial outliers.
Our algorithms follow the Sum-of-Squares based, to algorithms approach.
arXiv Detail & Related papers (2022-06-07T16:49:54Z) - Hybrid Stochastic-Deterministic Minibatch Proximal Gradient:
Less-Than-Single-Pass Optimization with Nearly Optimal Generalization [83.80460802169999]
We show that HSDMPG can attain an $mathcalObig (1/sttnbig)$ which is at the order of excess error on a learning model.
For loss factors, we prove that HSDMPG can attain an $mathcalObig (1/sttnbig)$ which is at the order of excess error on a learning model.
arXiv Detail & Related papers (2020-09-18T02:18:44Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
We study the problem of high-dimensional robust linear regression where a learner is given access to $n$ samples from the generative model $Y = langle X,w* rangle + epsilon$
We propose estimators for this problem under two settings: (i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance and (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
arXiv Detail & Related papers (2020-07-16T06:44:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.