論文の概要: A Review of Causal Decision Making
- arxiv url: http://arxiv.org/abs/2502.16156v1
- Date: Sat, 22 Feb 2025 09:17:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:58:06.301104
- Title: A Review of Causal Decision Making
- Title(参考訳): 因果判定の概観
- Authors: Lin Ge, Hengrui Cai, Runzhe Wan, Yang Xu, Rui Song,
- Abstract要約: レビューは、因果レンズを通して意思決定の3つの重要な側面を明らかにすることを目的としている。
因果決定の幅広い活用を妨げる課題を特定する。
- 参考スコア(独自算出の注目度): 16.51433817343809
- License:
- Abstract: To make effective decisions, it is important to have a thorough understanding of the causal relationships among actions, environments, and outcomes. This review aims to surface three crucial aspects of decision-making through a causal lens: 1) the discovery of causal relationships through causal structure learning, 2) understanding the impacts of these relationships through causal effect learning, and 3) applying the knowledge gained from the first two aspects to support decision making via causal policy learning. Moreover, we identify challenges that hinder the broader utilization of causal decision-making and discuss recent advances in overcoming these challenges. Finally, we provide future research directions to address these challenges and to further enhance the implementation of causal decision-making in practice, with real-world applications illustrated based on the proposed causal decision-making. We aim to offer a comprehensive methodology and practical implementation framework by consolidating various methods in this area into a Python-based collection. URL: https://causaldm.github.io/Causal-Decision-Making.
- Abstract(参考訳): 効果的な意思決定を行うためには、行動、環境、成果間の因果関係を徹底的に理解することが重要である。
このレビューは、因果レンズによる意思決定の3つの重要な側面を明らかにすることを目的としている。
1)因果構造学習による因果関係の発見
2【因果効果学習による関係の影響の理解】
3)最初の2つの側面から得られた知識を適用して,因果政策学習による意思決定を支援する。
さらに、因果決定の幅広い活用を妨げる課題を特定し、これらの課題を克服する最近の進歩について議論する。
最後に、これらの課題に対処し、提案した因果決定に基づいて実世界の応用を図示し、実際に因果決定を実施するための今後の研究指針を提供する。
この領域の様々なメソッドをPythonベースのコレクションに統合することで、包括的な方法論と実践的な実装フレームワークを提供することを目指している。
URL: https://causaldm.github.io/Causal-Decision-Making
関連論文リスト
- On Predictive planning and counterfactual learning in active inference [0.20482269513546453]
本稿では,「計画」と「経験から学ぶ」に基づくアクティブ推論における2つの意思決定手法について検討する。
これらの戦略間のデータ-複雑さのトレードオフをナビゲートする混合モデルを導入する。
提案手法を,エージェントの適応性を必要とするグリッドワールドシナリオで評価する。
論文 参考訳(メタデータ) (2024-03-19T04:02:31Z) - Determinants of LLM-assisted Decision-Making [0.0]
大規模言語モデル(LLM)は、人間の意思決定プロセスを強化するための多面的サポートを提供する。
本研究は,LCM支援による意思決定に影響を及ぼす決定因子の構造的概要と詳細な分析を提供する。
我々の発見は、人間とAIのコラボレーションにおける意思決定の質向上に不可欠であると見なすことができる。
論文 参考訳(メタデータ) (2024-02-27T10:24:50Z) - PresAIse, A Prescriptive AI Solution for Enterprises [6.523929486550928]
本稿は、IBM Researchのイニシアチブの概要であり、一連の規範的AIソリューションを提供することによって、これらの課題のいくつかに対処することを目的としている。
ソリューションスイートには、スケーラブルな因果推論方法、解釈可能な意思決定アプローチ、大規模言語モデルの統合が含まれている。
概念実証であるPresAIseは、非MLの専門家が自然言語インターフェースを介して規範的なAIモデルと対話できるようにすることで、ソリューションの可能性を示している。
論文 参考訳(メタデータ) (2024-02-03T03:23:08Z) - From Heuristic to Analytic: Cognitively Motivated Strategies for
Coherent Physical Commonsense Reasoning [66.98861219674039]
ヒューリスティック分析推論(HAR)戦略は、モデル決定のための合理化のコヒーレンスを大幅に改善する。
以上の結果から, PLM推論の一貫性と信頼性を効果的に向上できる可能性が示唆された。
論文 参考訳(メタデータ) (2023-10-24T19:46:04Z) - Causal Reinforcement Learning: A Survey [57.368108154871]
強化学習は、不確実性の下でのシーケンシャルな決定問題の解決に不可欠なパラダイムである。
主な障害の1つは、強化学習エージェントが世界に対する根本的な理解を欠いていることである。
因果性は、体系的な方法で知識を形式化できるという点で顕著な利点がある。
論文 参考訳(メタデータ) (2023-07-04T03:00:43Z) - Causal Deep Learning [77.49632479298745]
因果性は、現実世界の問題を解決する方法を変える可能性がある。
しかし因果関係は、実際にテストできない重要な仮定を必要とすることが多い。
我々は、因果性に関する新しい考え方を提案します。
論文 参考訳(メタデータ) (2023-03-03T19:19:18Z) - Inverse Online Learning: Understanding Non-Stationary and Reactionary
Policies [79.60322329952453]
エージェントが意思決定を行う方法の解釈可能な表現を開発する方法を示す。
一連の軌跡に基づく意思決定プロセスを理解することにより,このオンライン学習問題に対して,政策推論問題を逆問題とみなした。
本稿では、エージェントがそれらを更新するプロセスと並行して、その影響を遡及的に推定する実用的なアルゴリズムを提案する。
UNOSの臓器提供受諾決定の分析に応用することで、我々のアプローチは意思決定プロセスを管理する要因や時間とともにどのように変化するかに、貴重な洞察をもたらすことができることを実証する。
論文 参考訳(メタデータ) (2022-03-14T17:40:42Z) - The Statistical Complexity of Interactive Decision Making [126.04974881555094]
複雑度尺度であるDecision-Estimation Coefficientは,サンプル効率のインタラクティブ学習に必要かつ十分であることが証明された。
統合アルゴリズム設計原則であるE2Dは、教師付き推定のための任意のアルゴリズムを、意思決定のためのオンラインアルゴリズムに変換する。
論文 参考訳(メタデータ) (2021-12-27T02:53:44Z) - Precarity: Modeling the Long Term Effects of Compounded Decisions on
Individual Instability [7.993424873879106]
人々の生活の不安定さをカプセル化する用語であるプリカーティにはほとんど焦点が当てられていない。
マイナスの結果は、他の決定や幸福の尺度に及ばない可能性がある。
複合意思決定が予後に及ぼす影響をシミュレーションするモデリングフレームワークを提案する。
論文 参考訳(メタデータ) (2021-04-24T23:38:07Z) - Morshed: Guiding Behavioral Decision-Makers towards Better Security
Investment in Interdependent Systems [10.960507931439317]
我々は、相互依存システムの確保において、人間の意思決定の行動バイアスをモデル化する。
このような行動決定が資源配分の最適パターンに繋がることを示す。
複数ラウンド構成における意思決定向上のための3つの学習手法を提案する。
論文 参考訳(メタデータ) (2020-11-12T18:23:55Z) - Inverse Active Sensing: Modeling and Understanding Timely
Decision-Making [111.07204912245841]
我々は,内因性,文脈依存型時間圧下でのエビデンスに基づく意思決定の一般的な設定のための枠組みを開発する。
意思決定戦略において、サプライズ、サスペンス、最適性の直感的な概念をモデル化する方法を実証する。
論文 参考訳(メタデータ) (2020-06-25T02:30:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。