EPERM: An Evidence Path Enhanced Reasoning Model for Knowledge Graph Question and Answering
- URL: http://arxiv.org/abs/2502.16171v1
- Date: Sat, 22 Feb 2025 10:05:22 GMT
- Title: EPERM: An Evidence Path Enhanced Reasoning Model for Knowledge Graph Question and Answering
- Authors: Xiao Long, Liansheng Zhuang, Aodi Li, Minghong Yao, Shafei Wang,
- Abstract summary: This paper reformulates the KGQA problem as a graphical model and proposes a three-stage framework named the Evidence Path Enhanced Reasoning Model (EPERM) for KGQA.<n>In the first stage, EPERM uses the fine-tuned Large language models to retrieve a subgraph related to the question from the original knowledge graph.<n>In the second stage, EPERM filters out the evidence paths that faithfully support the reasoning of the questions, and score their importance in reasoning.
- Score: 3.1099372412393524
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the remarkable reasoning ability, Large language models (LLMs) have demonstrated impressive performance in knowledge graph question answering (KGQA) tasks, which find answers to natural language questions over knowledge graphs (KGs). To alleviate the hallucinations and lack of knowledge issues of LLMs, existing methods often retrieve the question-related information from KGs to enrich the input context. However, most methods focus on retrieving the relevant information while ignoring the importance of different types of knowledge in reasoning, which degrades their performance. To this end, this paper reformulates the KGQA problem as a graphical model and proposes a three-stage framework named the Evidence Path Enhanced Reasoning Model (EPERM) for KGQA. In the first stage, EPERM uses the fine-tuned LLM to retrieve a subgraph related to the question from the original knowledge graph. In the second stage, EPERM filters out the evidence paths that faithfully support the reasoning of the questions, and score their importance in reasoning. Finally, EPERM uses the weighted evidence paths to reason the final answer. Since considering the importance of different structural information in KGs for reasoning, EPERM can improve the reasoning ability of LLMs in KGQA tasks. Extensive experiments on benchmark datasets demonstrate that EPERM achieves superior performances in KGQA tasks.
Related papers
- Question-Aware Knowledge Graph Prompting for Enhancing Large Language Models [51.47994645529258]
We propose Question-Aware Knowledge Graph Prompting (QAP), which incorporates question embeddings into GNN aggregation to dynamically assess KG relevance.
Experimental results demonstrate that QAP outperforms state-of-the-art methods across multiple datasets, highlighting its effectiveness.
arXiv Detail & Related papers (2025-03-30T17:09:11Z) - Reasoning with Graphs: Structuring Implicit Knowledge to Enhance LLMs Reasoning [73.2950349728376]
Large language models (LLMs) have demonstrated remarkable success across a wide range of tasks.<n>However, they still encounter challenges in reasoning tasks that require understanding and inferring relationships between pieces of information.<n>This challenge is particularly pronounced in tasks involving multi-step processes, such as logical reasoning and multi-hop question answering.<n>We propose Reasoning with Graphs (RwG) by first constructing explicit graphs from the context.
arXiv Detail & Related papers (2025-01-14T05:18:20Z) - Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation [81.18701211912779]
We introduce an Adaptive Multi-Aspect Retrieval-augmented over KGs (Amar) framework.<n>This method retrieves knowledge including entities, relations, and subgraphs, and converts each piece of retrieved text into prompt embeddings.<n>Our method has achieved state-of-the-art performance on two common datasets.
arXiv Detail & Related papers (2024-12-24T16:38:04Z) - Question-guided Knowledge Graph Re-scoring and Injection for Knowledge Graph Question Answering [27.414670144354453]
KGQA involves answering natural language questions by leveraging structured information stored in a knowledge graph.
We propose a Question-guided Knowledge Graph Re-scoring method (Q-KGR) to eliminate noisy pathways for the input question.
We also introduce Knowformer, a parameter-efficient method for injecting the re-scored knowledge graph into large language models to enhance their ability to perform factual reasoning.
arXiv Detail & Related papers (2024-10-02T10:27:07Z) - Debate on Graph: a Flexible and Reliable Reasoning Framework for Large Language Models [33.662269036173456]
Large Language Models (LLMs) may suffer from hallucinations in real-world applications due to the lack of relevant knowledge.
Knowledge Graph Question Answering (KGQA) serves as a critical touchstone for the integration.
We propose an interactive KGQA framework that leverages the interactive learning capabilities of LLMs to perform reasoning and Debating over Graphs (DoG)
arXiv Detail & Related papers (2024-09-05T01:11:58Z) - Explore then Determine: A GNN-LLM Synergy Framework for Reasoning over Knowledge Graph [38.31983923708175]
This paper focuses on the Question Answering over Knowledge Graph (KGQA) task.
It proposes an Explore-then-Determine (EtD) framework that synergizes Large Language Models with graph neural networks (GNNs) for reasoning over KGs.
EtD achieves state-of-the-art performance and generates faithful reasoning results.
arXiv Detail & Related papers (2024-06-03T09:38:28Z) - Prompting Large Language Models with Knowledge Graphs for Question Answering Involving Long-tail Facts [50.06633829833144]
Large Language Models (LLMs) are effective in performing various NLP tasks, but struggle to handle tasks that require extensive, real-world knowledge.
We propose a benchmark that requires knowledge of long-tail facts for answering the involved questions.
Our experiments show that LLMs alone struggle with answering these questions, especially when the long-tail level is high or rich knowledge is required.
arXiv Detail & Related papers (2024-05-10T15:10:20Z) - CuriousLLM: Elevating Multi-Document Question Answering with LLM-Enhanced Knowledge Graph Reasoning [0.9295048974480845]
We propose CuriousLLM, an enhancement that integrates a curiosity-driven reasoning mechanism into an LLM agent.<n>This mechanism enables the agent to generate relevant follow-up questions, thereby guiding the information retrieval process more efficiently.<n>Our experiments show that CuriousLLM significantly boosts LLM performance in multi-document question answering (MD-QA)
arXiv Detail & Related papers (2024-04-13T20:43:46Z) - FusionMind -- Improving question and answering with external context
fusion [0.0]
We studied the impact of contextual knowledge on the Question-answering (QA) objective using pre-trained language models (LMs) and knowledge graphs (KGs)
We found that incorporating knowledge facts context led to a significant improvement in performance.
This suggests that the integration of contextual knowledge facts may be more impactful for enhancing question answering performance.
arXiv Detail & Related papers (2023-12-31T03:51:31Z) - Reasoning on Graphs: Faithful and Interpretable Large Language Model
Reasoning [104.92384929827776]
Large language models (LLMs) have demonstrated impressive reasoning abilities in complex tasks.
They lack up-to-date knowledge and experience hallucinations during reasoning.
Knowledge graphs (KGs) offer a reliable source of knowledge for reasoning.
arXiv Detail & Related papers (2023-10-02T10:14:43Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
Multi-hop Question Answering over Knowledge Graph(KGQA) aims to find the answer entities that are multiple hops away from the topic entities mentioned in a natural language question.
We propose UniKGQA, a novel approach for multi-hop KGQA task, by unifying retrieval and reasoning in both model architecture and parameter learning.
arXiv Detail & Related papers (2022-12-02T04:08:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.