Dynamic Parallel Tree Search for Efficient LLM Reasoning
- URL: http://arxiv.org/abs/2502.16235v2
- Date: Thu, 27 Feb 2025 06:39:06 GMT
- Title: Dynamic Parallel Tree Search for Efficient LLM Reasoning
- Authors: Yifu Ding, Wentao Jiang, Shunyu Liu, Yongcheng Jing, Jinyang Guo, Yingjie Wang, Jing Zhang, Zengmao Wang, Ziwei Liu, Bo Du, Xianglong Liu, Dacheng Tao,
- Abstract summary: Tree of Thoughts (ToT) enhances Large Language Model (LLM) reasoning by structuring problem-solving as a spanning tree.<n>We propose Dynamic Parallel Tree Search (DPTS), a novel parallelism framework that aims to dynamically optimize the reasoning path in inference.<n> Experiments on Qwen-2.5 and Llama-3 with Math500 and GSM8K datasets show that DPTS significantly improves efficiency by 2-4x on average.
- Score: 102.16694475391665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tree of Thoughts (ToT) enhances Large Language Model (LLM) reasoning by structuring problem-solving as a spanning tree. However, recent methods focus on search accuracy while overlooking computational efficiency. The challenges of accelerating the ToT lie in the frequent switching of reasoning focus, and the redundant exploration of suboptimal solutions. To alleviate this dilemma, we propose Dynamic Parallel Tree Search (DPTS), a novel parallelism framework that aims to dynamically optimize the reasoning path in inference. It includes the Parallelism Streamline in the generation phase to build up a flexible and adaptive parallelism with arbitrary paths by fine-grained cache management and alignment. Meanwhile, the Search and Transition Mechanism filters potential candidates to dynamically maintain the reasoning focus on more possible solutions and have less redundancy. Experiments on Qwen-2.5 and Llama-3 with Math500 and GSM8K datasets show that DPTS significantly improves efficiency by 2-4x on average while maintaining or even surpassing existing reasoning algorithms in accuracy, making ToT-based reasoning more scalable and computationally efficient.
Related papers
- AdaR1: From Long-CoT to Hybrid-CoT via Bi-Level Adaptive Reasoning Optimization [86.56120216550232]
We propose a novel two-stage framework for adaptive and efficient reasoning.
First, we construct a hybrid reasoning model by merging long and short CoT models.
Second, we apply bi-level preference training to guide the model to select suitable reasoning styles.
arXiv Detail & Related papers (2025-04-30T14:01:45Z) - LogicTree: Structured Proof Exploration for Coherent and Rigorous Logical Reasoning with Large Language Models [7.967925911756304]
LogicTree is an inference-time modular framework employing algorithm-guided search to automate structured proof exploration.
We introduce two-free derivations for premise prioritization, enabling strategic proof search.
Within LogicTree, GPT-4o outperforms o3-mini by 7.6% on average.
arXiv Detail & Related papers (2025-04-18T22:10:02Z) - Stop Overthinking: A Survey on Efficient Reasoning for Large Language Models [54.04678363287392]
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex tasks.
Recent advancements in OpenAI o1 and DeepSeek-R1 have further improved performance in System-2 reasoning domains.
arXiv Detail & Related papers (2025-03-20T17:59:38Z) - Adaptive Graph of Thoughts: Test-Time Adaptive Reasoning Unifying Chain, Tree, and Graph Structures [0.0]
We introduce Adaptive Graph of Thoughts (AGoT), a dynamic, graph-based inference framework.<n>AGoT enhances Large Language Models (LLMs) reasoning solely at test time.<n>We validate our approach on diverse benchmarks spanning multi-hop retrieval, scientific reasoning, and mathematical problem-solving.
arXiv Detail & Related papers (2025-02-07T16:54:19Z) - Forest-of-Thought: Scaling Test-Time Compute for Enhancing LLM Reasoning [40.069109287947875]
We propose a novel reasoning framework called Forest-of-Thought (FoT)
FoT integrates multiple reasoning trees to leverage collective decision-making for solving complex logical problems.
FoT employs sparse activation strategies to select the most relevant reasoning paths, improving both efficiency and accuracy.
arXiv Detail & Related papers (2024-12-12T09:01:18Z) - LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning [56.273799410256075]
The framework combines Monte Carlo Tree Search (MCTS) with iterative Self-Refine to optimize the reasoning path.
The framework has been tested on general and advanced benchmarks, showing superior performance in terms of search efficiency and problem-solving capability.
arXiv Detail & Related papers (2024-10-03T18:12:29Z) - Chain of Preference Optimization: Improving Chain-of-Thought Reasoning in LLMs [37.147529569445396]
Tree-of-thought (ToT) method employs tree-searching to extensively explore the reasoning space and find better reasoning paths that CoT decoding might overlook.
Fine-tuning language models (LLMs) leveraging the search tree constructed by ToT allows CoT to achieve similar or better performance.
This is achieved through Chain of Preference Optimization (CPO), where LLMs are fine-tuned to align each step of the CoT reasoning paths with those of ToT.
arXiv Detail & Related papers (2024-06-13T14:07:02Z) - PathFinder: Guided Search over Multi-Step Reasoning Paths [80.56102301441899]
We propose PathFinder, a tree-search-based reasoning path generation approach.
It enhances diverse branching and multi-hop reasoning through the integration of dynamic decoding.
Our model generalizes well to longer, unseen reasoning chains, reflecting similar complexities to beam search with large branching factors.
arXiv Detail & Related papers (2023-12-08T17:05:47Z) - Autonomous Tree-search Ability of Large Language Models [58.68735916408101]
Large Language Models have excelled in remarkable reasoning capabilities with advanced prompting techniques.
Recent works propose to utilize external programs to define search logic, such that LLMs can perform passive tree search to solve more challenging reasoning tasks.
We propose a new concept called autonomous tree-search ability of LLM, which can automatically generate a response containing search trajectories for the correct answer.
arXiv Detail & Related papers (2023-10-14T14:14:38Z) - Tree-of-Mixed-Thought: Combining Fast and Slow Thinking for Multi-hop
Visual Reasoning [16.495754104540605]
Large language models (LLMs) can generate code-like plans for complex inference tasks such as visual reasoning.
We propose a hierarchical plan-searching algorithm that integrates the one-stop reasoning (fast) and the Tree-of-thought (slow)
arXiv Detail & Related papers (2023-08-18T16:21:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.