Understanding the Emergence of Multimodal Representation Alignment
- URL: http://arxiv.org/abs/2502.16282v2
- Date: Fri, 13 Jun 2025 13:11:45 GMT
- Title: Understanding the Emergence of Multimodal Representation Alignment
- Authors: Megan Tjandrasuwita, Chanakya Ekbote, Liu Ziyin, Paul Pu Liang,
- Abstract summary: A recent line of work has found that independently trained unimodal models of increasing scale and performance can become implicitly aligned with each other.<n>We show that both the emergence of alignment and its relationship with task performance depend on several critical data characteristics.<n>Our findings suggest that alignment may not be universally beneficial; rather, its impact on performance varies depending on the dataset and task.
- Score: 22.81361409729974
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal representation learning is fundamentally about transforming incomparable modalities into comparable representations. While prior research primarily focused on explicitly aligning these representations through targeted learning objectives and model architectures, a recent line of work has found that independently trained unimodal models of increasing scale and performance can become implicitly aligned with each other. These findings raise fundamental questions regarding the emergence of aligned representations in multimodal learning. Specifically: (1) when and why does alignment emerge implicitly? and (2) is alignment a reliable indicator of performance? Through a comprehensive empirical investigation, we demonstrate that both the emergence of alignment and its relationship with task performance depend on several critical data characteristics. These include, but are not necessarily limited to, the degree of similarity between the modalities and the balance between redundant and unique information they provide for the task. Our findings suggest that alignment may not be universally beneficial; rather, its impact on performance varies depending on the dataset and task. These insights can help practitioners determine whether increasing alignment between modalities is advantageous or, in some cases, detrimental to achieving optimal performance. Code is released at https://github.com/MeganTj/multimodal_alignment.
Related papers
- Explaining and Mitigating the Modality Gap in Contrastive Multimodal Learning [7.412307614007383]
Multimodal learning models are designed to bridge different modalities, such as images and text, by learning a shared representation space.<n>These models often exhibit a modality gap, where different modalities occupy distinct regions within the shared representation space.<n>We identify the critical roles of mismatched data pairs and a learnable temperature parameter in causing and perpetuating the modality gap during training.
arXiv Detail & Related papers (2024-12-10T20:36:49Z) - Enhancing Multimodal Unified Representations for Cross Modal Generalization [52.16653133604068]
We propose Training-free Optimization of Codebook (TOC) and Fine and Coarse cross-modal Information Disentangling (FCID)<n>These methods refine the unified discrete representations from pretraining and perform fine- and coarse-grained information disentanglement tailored to the specific characteristics of each modality.
arXiv Detail & Related papers (2024-03-08T09:16:47Z) - Leveraging sparse and shared feature activations for disentangled
representation learning [112.22699167017471]
We propose to leverage knowledge extracted from a diversified set of supervised tasks to learn a common disentangled representation.
We validate our approach on six real world distribution shift benchmarks, and different data modalities.
arXiv Detail & Related papers (2023-04-17T01:33:24Z) - Understanding and Constructing Latent Modality Structures in Multi-modal
Representation Learning [53.68371566336254]
We argue that the key to better performance lies in meaningful latent modality structures instead of perfect modality alignment.
Specifically, we design 1) a deep feature separation loss for intra-modality regularization; 2) a Brownian-bridge loss for inter-modality regularization; and 3) a geometric consistency loss for both intra- and inter-modality regularization.
arXiv Detail & Related papers (2023-03-10T14:38:49Z) - Multi-Task Self-Supervised Time-Series Representation Learning [3.31490164885582]
Time-series representation learning can extract representations from data with temporal dynamics and sparse labels.
We propose a new time-series representation learning method by combining the advantages of self-supervised tasks.
We evaluate the proposed framework on three downstream tasks: time-series classification, forecasting, and anomaly detection.
arXiv Detail & Related papers (2023-03-02T07:44:06Z) - Task Formulation Matters When Learning Continually: A Case Study in
Visual Question Answering [58.82325933356066]
Continual learning aims to train a model incrementally on a sequence of tasks without forgetting previous knowledge.
We present a detailed study of how different settings affect performance for Visual Question Answering.
arXiv Detail & Related papers (2022-09-30T19:12:58Z) - VLCDoC: Vision-Language Contrastive Pre-Training Model for Cross-Modal
Document Classification [3.7798600249187295]
Multimodal learning from document data has achieved great success lately as it allows to pre-train semantically meaningful features as a prior into a learnable downstream task.
In this paper, we approach the document classification problem by learning cross-modal representations through language and vision cues.
The proposed method exploits high-level interactions and learns relevant semantic information from effective attention flows within and across modalities.
arXiv Detail & Related papers (2022-05-24T12:28:12Z) - On Modality Bias Recognition and Reduction [70.69194431713825]
We study the modality bias problem in the context of multi-modal classification.
We propose a plug-and-play loss function method, whereby the feature space for each label is adaptively learned.
Our method yields remarkable performance improvements compared with the baselines.
arXiv Detail & Related papers (2022-02-25T13:47:09Z) - Concurrent Discrimination and Alignment for Self-Supervised Feature
Learning [52.213140525321165]
Existing self-supervised learning methods learn by means of pretext tasks which are either (1) discriminating that explicitly specify which features should be separated or (2) aligning that precisely indicate which features should be closed together.
In this work, we combine the positive aspects of the discriminating and aligning methods, and design a hybrid method that addresses the above issue.
Our method explicitly specifies the repulsion and attraction mechanism respectively by discriminative predictive task and concurrently maximizing mutual information between paired views.
Our experiments on nine established benchmarks show that the proposed model consistently outperforms the existing state-of-the-art results of self-supervised and transfer
arXiv Detail & Related papers (2021-08-19T09:07:41Z) - Sign-regularized Multi-task Learning [13.685061061742523]
Multi-task learning is a framework that enforces different learning tasks to share their knowledge to improve their performance.
It strives to handle several core issues; particularly, which tasks are correlated and similar, and how to share the knowledge among correlated tasks.
arXiv Detail & Related papers (2021-02-22T17:11:15Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
We propose an auxiliary training objective that improves the generalization capabilities of neural networks.
We use pairs of minimally-different examples with different labels, a.k.a counterfactual or contrasting examples, which provide a signal indicative of the underlying causal structure of the task.
Models trained with this technique demonstrate improved performance on out-of-distribution test sets.
arXiv Detail & Related papers (2020-04-20T02:47:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.