Explaining and Mitigating the Modality Gap in Contrastive Multimodal Learning
- URL: http://arxiv.org/abs/2412.07909v1
- Date: Tue, 10 Dec 2024 20:36:49 GMT
- Title: Explaining and Mitigating the Modality Gap in Contrastive Multimodal Learning
- Authors: Can Yaras, Siyi Chen, Peng Wang, Qing Qu,
- Abstract summary: Multimodal learning models are designed to bridge different modalities, such as images and text, by learning a shared representation space.
These models often exhibit a modality gap, where different modalities occupy distinct regions within the shared representation space.
We identify the critical roles of mismatched data pairs and a learnable temperature parameter in causing and perpetuating the modality gap during training.
- Score: 7.412307614007383
- License:
- Abstract: Multimodal learning has recently gained significant popularity, demonstrating impressive performance across various zero-shot classification tasks and a range of perceptive and generative applications. Models such as Contrastive Language-Image Pretraining (CLIP) are designed to bridge different modalities, such as images and text, by learning a shared representation space through contrastive learning. Despite their success, the working mechanisms underlying multimodal learning are not yet well understood. Notably, these models often exhibit a modality gap, where different modalities occupy distinct regions within the shared representation space. In this work, we conduct an in-depth analysis of the emergence of modality gap by characterizing the gradient flow learning dynamics. Specifically, we identify the critical roles of mismatched data pairs and a learnable temperature parameter in causing and perpetuating the modality gap during training. Furthermore, our theoretical insights are validated through experiments on practical CLIP models. These findings provide principled guidance for mitigating the modality gap, including strategies such as appropriate temperature scheduling and modality swapping. Additionally, we demonstrate that closing the modality gap leads to improved performance on tasks such as image-text retrieval.
Related papers
- Unified Generative and Discriminative Training for Multi-modal Large Language Models [88.84491005030316]
Generative training has enabled Vision-Language Models (VLMs) to tackle various complex tasks.
Discriminative training, exemplified by models like CLIP, excels in zero-shot image-text classification and retrieval.
This paper proposes a unified approach that integrates the strengths of both paradigms.
arXiv Detail & Related papers (2024-11-01T01:51:31Z) - Cross-Modal Few-Shot Learning: a Generative Transfer Learning Framework [58.362064122489166]
This paper introduces the Cross-modal Few-Shot Learning task, which aims to recognize instances from multiple modalities when only a few labeled examples are available.
We propose a Generative Transfer Learning framework consisting of two stages: the first involves training on abundant unimodal data, and the second focuses on transfer learning to adapt to novel data.
Our finds demonstrate that GTL has superior performance compared to state-of-the-art methods across four distinct multi-modal datasets.
arXiv Detail & Related papers (2024-10-14T16:09:38Z) - Enhancing Continual Learning in Visual Question Answering with Modality-Aware Feature Distillation [48.071162716120334]
We study how the multimodal nature of the input affects the learning dynamics of a model.
Motivated by this observation, we propose a modality-aware feature distillation (MAFED) approach.
arXiv Detail & Related papers (2024-06-27T16:12:57Z) - Beyond Unimodal Learning: The Importance of Integrating Multiple Modalities for Lifelong Learning [23.035725779568587]
We study the role and interactions of multiple modalities in mitigating forgetting in deep neural networks (DNNs)
Our findings demonstrate that leveraging multiple views and complementary information from multiple modalities enables the model to learn more accurate and robust representations.
We propose a method for integrating and aligning the information from different modalities by utilizing the relational structural similarities between the data points in each modality.
arXiv Detail & Related papers (2024-05-04T22:02:58Z) - A Probabilistic Model Behind Self-Supervised Learning [53.64989127914936]
In self-supervised learning (SSL), representations are learned via an auxiliary task without annotated labels.
We present a generative latent variable model for self-supervised learning.
We show that several families of discriminative SSL, including contrastive methods, induce a comparable distribution over representations.
arXiv Detail & Related papers (2024-02-02T13:31:17Z) - Leveraging Diffusion Disentangled Representations to Mitigate Shortcuts
in Underspecified Visual Tasks [92.32670915472099]
We propose an ensemble diversification framework exploiting the generation of synthetic counterfactuals using Diffusion Probabilistic Models (DPMs)
We show that diffusion-guided diversification can lead models to avert attention from shortcut cues, achieving ensemble diversity performance comparable to previous methods requiring additional data collection.
arXiv Detail & Related papers (2023-10-03T17:37:52Z) - Continual Vision-Language Representation Learning with Off-Diagonal
Information [112.39419069447902]
Multi-modal contrastive learning frameworks like CLIP typically require a large amount of image-text samples for training.
This paper discusses the feasibility of continual CLIP training using streaming data.
arXiv Detail & Related papers (2023-05-11T08:04:46Z) - On Modality Bias Recognition and Reduction [70.69194431713825]
We study the modality bias problem in the context of multi-modal classification.
We propose a plug-and-play loss function method, whereby the feature space for each label is adaptively learned.
Our method yields remarkable performance improvements compared with the baselines.
arXiv Detail & Related papers (2022-02-25T13:47:09Z) - Contrastive Continual Learning with Feature Propagation [32.70482982044965]
Continual machine learners are elaborated to commendably learn a stream of tasks with domain and class shifts among different tasks.
We propose a general feature-propagation based contrastive continual learning method which is capable of handling multiple continual learning scenarios.
arXiv Detail & Related papers (2021-12-03T04:55:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.