TimePFN: Effective Multivariate Time Series Forecasting with Synthetic Data
- URL: http://arxiv.org/abs/2502.16294v1
- Date: Sat, 22 Feb 2025 16:55:14 GMT
- Title: TimePFN: Effective Multivariate Time Series Forecasting with Synthetic Data
- Authors: Ege Onur Taga, M. Emrullah Ildiz, Samet Oymak,
- Abstract summary: TimePFN is based on the concept of Prior-data Fitted Networks (PFN), which aims to approximate Bayesian inference.<n>We evaluate TimePFN on several benchmark datasets and demonstrate that it outperforms the existing state-of-the-art models for MTS forecasting.
- Score: 22.458320848520042
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The diversity of time series applications and scarcity of domain-specific data highlight the need for time-series models with strong few-shot learning capabilities. In this work, we propose a novel training scheme and a transformer-based architecture, collectively referred to as TimePFN, for multivariate time-series (MTS) forecasting. TimePFN is based on the concept of Prior-data Fitted Networks (PFN), which aims to approximate Bayesian inference. Our approach consists of (1) generating synthetic MTS data through diverse Gaussian process kernels and the linear coregionalization method, and (2) a novel MTS architecture capable of utilizing both temporal and cross-channel dependencies across all input patches. We evaluate TimePFN on several benchmark datasets and demonstrate that it outperforms the existing state-of-the-art models for MTS forecasting in both zero-shot and few-shot settings. Notably, fine-tuning TimePFN with as few as 500 data points nearly matches full dataset training error, and even 50 data points yield competitive results. We also find that TimePFN exhibits strong univariate forecasting performance, attesting to its generalization ability. Overall, this work unlocks the power of synthetic data priors for MTS forecasting and facilitates strong zero- and few-shot forecasting performance.
Related papers
- Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
Time series forecasting plays a critical role in various real-world applications, including energy consumption prediction, disease transmission monitoring, and weather forecasting.
Most existing methods rely on a centralized training paradigm, where large amounts of data are collected from distributed devices to a central cloud server.
We propose a novel framework, Fed-TREND, to address data heterogeneity by generating informative synthetic data as auxiliary knowledge carriers.
arXiv Detail & Related papers (2024-11-24T04:56:45Z) - FlowTS: Time Series Generation via Rectified Flow [67.41208519939626]
FlowTS is an ODE-based model that leverages rectified flow with straight-line transport in probability space.<n>For unconditional setting, FlowTS achieves state-of-the-art performance, with context FID scores of 0.019 and 0.011 on Stock and ETTh datasets.<n>For conditional setting, we have achieved superior performance in solar forecasting.
arXiv Detail & Related papers (2024-11-12T03:03:23Z) - Test Time Learning for Time Series Forecasting [1.4605709124065924]
Test-Time Training (TTT) modules consistently outperform state-of-the-art models, including the Mamba-based TimeMachine.<n>Our results show significant improvements in Mean Squared Error (MSE) and Mean Absolute Error (MAE)<n>This work sets a new benchmark for time-series forecasting and lays the groundwork for future research in scalable, high-performance forecasting models.
arXiv Detail & Related papers (2024-09-21T04:40:08Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - Chronos: Learning the Language of Time Series [79.38691251254173]
Chronos is a framework for pretrained probabilistic time series models.
We show that Chronos models can leverage time series data from diverse domains to improve zero-shot accuracy on unseen forecasting tasks.
arXiv Detail & Related papers (2024-03-12T16:53:54Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
We present a Masked-based Universal Time Series Forecasting Transformer (Moirai)
Moirai is trained on our newly introduced Large-scale Open Time Series Archive (LOTSA) featuring over 27B observations across nine domains.
Moirai achieves competitive or superior performance as a zero-shot forecaster when compared to full-shot models.
arXiv Detail & Related papers (2024-02-04T20:00:45Z) - TPRNN: A Top-Down Pyramidal Recurrent Neural Network for Time Series
Forecasting [7.08506873242564]
Time series have multi-scale characteristics, i.e., different temporal patterns at different scales.
We propose TPRNN, a Top-down Pyramidal Recurrent Neural Network for time series forecasting.
TPRNN has achieved the state-of-the-art performance with an average improvement of 8.13% in MSE compared to the best baseline.
arXiv Detail & Related papers (2023-12-11T12:21:45Z) - Fully-Connected Spatial-Temporal Graph for Multivariate Time-Series Data [50.84488941336865]
We propose a novel method called Fully- Spatial-Temporal Graph Neural Network (FC-STGNN)
For graph construction, we design a decay graph to connect sensors across all timestamps based on their temporal distances.
For graph convolution, we devise FC graph convolution with a moving-pooling GNN layer to effectively capture the ST dependencies for learning effective representations.
arXiv Detail & Related papers (2023-09-11T08:44:07Z) - SpectraNet: Multivariate Forecasting and Imputation under Distribution
Shifts and Missing Data [40.21502451136054]
SpectraNet is a novel time-series forecasting model that dynamically infers temporal dynamics and correlations on the recent observed history.
A Convolution Neural Network maps the learned representation by sequentially mixing its components and refining the output.
Our proposed approach can simultaneously produce forecasts and interpolate past observations and can, therefore, greatly simplify production systems.
arXiv Detail & Related papers (2022-10-22T18:07:31Z) - Pre-training Enhanced Spatial-temporal Graph Neural Network for
Multivariate Time Series Forecasting [13.441945545904504]
We propose a novel framework, in which STGNN is Enhanced by a scalable time series Pre-training model (STEP)
Specifically, we design a pre-training model to efficiently learn temporal patterns from very long-term history time series.
Our framework is capable of significantly enhancing downstream STGNNs, and our pre-training model aptly captures temporal patterns.
arXiv Detail & Related papers (2022-06-18T04:24:36Z) - Cluster-and-Conquer: A Framework For Time-Series Forecasting [94.63501563413725]
We propose a three-stage framework for forecasting high-dimensional time-series data.
Our framework is highly general, allowing for any time-series forecasting and clustering method to be used in each step.
When instantiated with simple linear autoregressive models, we are able to achieve state-of-the-art results on several benchmark datasets.
arXiv Detail & Related papers (2021-10-26T20:41:19Z) - Improving the Accuracy of Global Forecasting Models using Time Series
Data Augmentation [7.38079566297881]
Forecasting models that are trained across sets of many time series, known as Global Forecasting Models (GFM), have shown promising results in forecasting competitions and real-world applications.
We propose a novel, data augmentation based forecasting framework that is capable of improving the baseline accuracy of GFM models in less data-abundant settings.
arXiv Detail & Related papers (2020-08-06T13:52:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.