TabGen-ICL: Residual-Aware In-Context Example Selection for Tabular Data Generation
- URL: http://arxiv.org/abs/2502.16414v1
- Date: Sun, 23 Feb 2025 02:51:58 GMT
- Title: TabGen-ICL: Residual-Aware In-Context Example Selection for Tabular Data Generation
- Authors: Liancheng Fang, Aiwei Liu, Hengrui Zhang, Henry Peng Zou, Weizhi Zhang, Philip S. Yu,
- Abstract summary: TabGen-ICL operates iteratively, retrieving a subset of real samples that represent the residual between currently generated samples and true data distributions.<n>Experiments on five real-world datasets demonstrate that TabGen-ICL significantly outperforms the random selection strategy.
- Score: 38.08438831075632
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language models (LLMs) have achieved encouraging results in tabular data generation. However, existing approaches require fine-tuning, which is computationally expensive. This paper explores an alternative: prompting a fixed LLM with in-context examples. We observe that using randomly selected in-context examples hampers the LLM's performance, resulting in sub-optimal generation quality. To address this, we propose a novel in-context learning framework: TabGen-ICL, to enhance the in-context learning ability of LLMs for tabular data generation. TabGen-ICL operates iteratively, retrieving a subset of real samples that represent the residual between currently generated samples and true data distributions. This approach serves two purposes: locally, it provides more effective in-context learning examples for the LLM in each iteration; globally, it progressively narrows the gap between generated and real data. Extensive experiments on five real-world tabular datasets demonstrate that TabGen-ICL significantly outperforms the random selection strategy. Specifically, it reduces the error rate by a margin of $3.5\%-42.2\%$ on fidelity metrics. We demonstrate for the first time that prompting a fixed LLM can yield high-quality synthetic tabular data. The code is provided in the \href{https://github.com/fangliancheng/TabGEN-ICL}{link}.
Related papers
- LLMs as Data Annotators: How Close Are We to Human Performance [47.61698665650761]
Manual annotation of data is labor-intensive, time-consuming, and costly.
In-context learning (ICL) in which some examples related to the task are given in the prompt can lead to inefficiencies and suboptimal model performance.
This paper presents experiments comparing several LLMs, considering different embedding models, across various datasets for the Named Entity Recognition (NER) task.
arXiv Detail & Related papers (2025-04-21T11:11:07Z) - Scalable In-Context Learning on Tabular Data via Retrieval-Augmented Large Language Models [15.603556124006479]
We propose retrieval-augmented language models for scalable TabICL.<n>Our approach incorporates a customized retrieval module, combined with retrieval-guided instruction-tuning for LLMs.<n>This enables LLMs to effectively leverage larger datasets, achieving significantly improved performance across 69 widely recognized datasets.
arXiv Detail & Related papers (2025-02-05T13:16:41Z) - Provenance: A Light-weight Fact-checker for Retrieval Augmented LLM Generation Output [49.893971654861424]
We present a light-weight approach for detecting nonfactual outputs from retrieval-augmented generation (RAG)
We compute a factuality score that can be thresholded to yield a binary decision.
Our experiments show high area under the ROC curve (AUC) across a wide range of relevant open source datasets.
arXiv Detail & Related papers (2024-11-01T20:44:59Z) - Generating Realistic Tabular Data with Large Language Models [49.03536886067729]
Large language models (LLM) have been used for diverse tasks, but do not capture the correct correlation between the features and the target variable.
We propose a LLM-based method with three important improvements to correctly capture the ground-truth feature-class correlation in the real data.
Our experiments show that our method significantly outperforms 10 SOTA baselines on 20 datasets in downstream tasks.
arXiv Detail & Related papers (2024-10-29T04:14:32Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph [70.79413606968814]
We introduce Dynamic Evaluation of LLMs via Adaptive Reasoning Graph Evolvement (DARG) to dynamically extend current benchmarks with controlled complexity and diversity.
Specifically, we first extract the reasoning graphs of data points in current benchmarks and then perturb the reasoning graphs to generate novel testing data.
Such newly generated test samples can have different levels of complexity while maintaining linguistic diversity similar to the original benchmarks.
arXiv Detail & Related papers (2024-06-25T04:27:53Z) - AlignedCoT: Prompting Large Language Models via Native-Speaking Demonstrations [52.43593893122206]
Alignedcot is an in-context learning technique for invoking Large Language Models.
It achieves consistent and correct step-wise prompts in zero-shot scenarios.
We conduct experiments on mathematical reasoning and commonsense reasoning.
arXiv Detail & Related papers (2023-11-22T17:24:21Z) - Large Language Model-Aware In-Context Learning for Code Generation [75.68709482932903]
Large language models (LLMs) have shown impressive in-context learning (ICL) ability in code generation.
We propose a novel learning-based selection approach named LAIL (LLM-Aware In-context Learning) for code generation.
arXiv Detail & Related papers (2023-10-15T06:12:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.