Visual Reasoning Evaluation of Grok, Deepseek Janus, Gemini, Qwen, Mistral, and ChatGPT
- URL: http://arxiv.org/abs/2502.16428v1
- Date: Sun, 23 Feb 2025 04:01:43 GMT
- Title: Visual Reasoning Evaluation of Grok, Deepseek Janus, Gemini, Qwen, Mistral, and ChatGPT
- Authors: Nidhal Jegham, Marwan Abdelatti, Abdeltawab Hendawi,
- Abstract summary: This study introduces a novel benchmark that integrates multi-image reasoning tasks with rejection-based evaluation and positional bias detection.<n>We applied this benchmark to assess Grok 3, ChatGPT-4o, ChatGPT-o1, Gemini 2.0 Flash Experimental, DeepSeek Janus models, Qwen2.5-VL-72B-Instruct, QVQ-72B-Preview, and Pixtral 12B.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional evaluations of multimodal large language models (LLMs) have been limited by their focus on single-image reasoning, failing to assess crucial aspects like contextual understanding, reasoning stability, and uncertainty calibration. This study addresses these limitations by introducing a novel benchmark that integrates multi-image reasoning tasks with rejection-based evaluation and positional bias detection. To evaluate these dimensions, we further introduce entropy as a novel metric for quantifying reasoning consistency across reordered answer variants. We applied this benchmark to assess Grok 3, ChatGPT-4o, ChatGPT-o1, Gemini 2.0 Flash Experimental, DeepSeek Janus models, Qwen2.5-VL-72B-Instruct, QVQ-72B-Preview, and Pixtral 12B across eight visual reasoning tasks, including difference spotting and diagram interpretation. Our findings reveal ChatGPT-o1 leading in overall accuracy (82.5\%) and rejection accuracy (70.0\%), closely followed by Gemini 2.0 Flash Experimental (70.8\%). QVQ-72B-Preview demonstrated superior rejection accuracy (85.5\%). Notably, Pixtral 12B (51.7\%) showed promise in specific domains, while Janus models exhibited challenges in bias and uncertainty calibration, reflected in low rejection accuracies and high entropy scores. High entropy scores in Janus models (Janus 7B: 0.8392, Janus 1B: 0.787) underscore their susceptibility to positional bias and unstable reasoning, contrasting with the low entropy and robust reasoning of ChatGPT models. The study further demonstrates that model size is not the sole determinant of performance, as evidenced by Grok 3 underperformance despite its substantial parameter count. By employing multi-image contexts, rejection mechanisms, and entropy-based consistency metrics, this benchmark sets a new standard for evaluating multimodal LLMs, enabling a more robust and reliable assessment of next-generation AI systems.
Related papers
- Can Large Reasoning Models do Analogical Reasoning under Perceptual Uncertainty? [20.72570252804897]
We evaluate OpenAI's o3-mini and DeepSeek R1 on analogical reasoning.
We benchmark with the I-RAVEN dataset and its more difficult extension, I-RAVEN-X.
We observe a sharp decline in OpenAI's o3-mini task accuracy, dropping from 86.6% on the original I-RAVEN to just 17.0% -- approaching random chance -- on the more challenging I-RAVEN-X.
arXiv Detail & Related papers (2025-03-14T08:52:25Z) - Benchmarking Reasoning Robustness in Large Language Models [76.79744000300363]
We find significant performance degradation on novel or incomplete data.
These findings highlight the reliance on recall over rigorous logical inference.
This paper introduces a novel benchmark, termed as Math-RoB, that exploits hallucinations triggered by missing information to expose reasoning gaps.
arXiv Detail & Related papers (2025-03-06T15:36:06Z) - Bridging Internal Probability and Self-Consistency for Effective and Efficient LLM Reasoning [53.25336975467293]
We present the first theoretical error decomposition analysis of methods such as perplexity and self-consistency.<n>Our analysis reveals a fundamental trade-off: perplexity methods suffer from substantial model error due to the absence of a proper consistency function.<n>We propose Reasoning-Pruning Perplexity Consistency (RPC), which integrates perplexity with self-consistency, and Reasoning Pruning, which eliminates low-probability reasoning paths.
arXiv Detail & Related papers (2025-02-01T18:09:49Z) - Challenges and Considerations in the Evaluation of Bayesian Causal Discovery [49.0053848090947]
Representing uncertainty in causal discovery is a crucial component for experimental design, and more broadly, for safe and reliable causal decision making.
Unlike non-Bayesian causal discovery, which relies on a single estimated causal graph and model parameters for assessment, causal discovery presents challenges due to the nature of its quantity.
No consensus on the most suitable metric for evaluation.
arXiv Detail & Related papers (2024-06-05T12:45:23Z) - Uncertainty Quantification for Bird's Eye View Semantic Segmentation: Methods and Benchmarks [10.193504550494486]
This paper introduces a benchmark for predictive uncertainty quantification in BEV segmentation.
It focuses on the effectiveness of predicted uncertainty in identifying misclassified and out-of-distribution pixels, as well as calibration.
We propose the Uncertainty-Focal-Cross-Entropy loss, designed for highly imbalanced data, which consistently improves the segmentation quality and calibration.
arXiv Detail & Related papers (2024-05-31T16:32:46Z) - Large Language Models are not Fair Evaluators [60.27164804083752]
We find that the quality ranking of candidate responses can be easily hacked by altering their order of appearance in the context.
This manipulation allows us to skew the evaluation result, making one model appear considerably superior to the other.
We propose a framework with three simple yet effective strategies to mitigate this issue.
arXiv Detail & Related papers (2023-05-29T07:41:03Z) - Toward Reliable Human Pose Forecasting with Uncertainty [51.628234388046195]
We develop an open-source library for human pose forecasting, including multiple models, supporting several datasets.
We devise two types of uncertainty in the problem to increase performance and convey better trust.
arXiv Detail & Related papers (2023-04-13T17:56:08Z) - On the Calibration and Uncertainty with P\'{o}lya-Gamma Augmentation for
Dialog Retrieval Models [30.519215651368683]
dialog response retrieval models output a single score for a response on how relevant it is to a given question.
Bad calibration of deep neural network results in various uncertainty for the single score such that the unreliable predictions always misinform user decisions.
We present an efficient calibration and uncertainty estimation framework PG-DRR for dialog response retrieval models.
arXiv Detail & Related papers (2023-03-15T13:26:25Z) - Mutual Wasserstein Discrepancy Minimization for Sequential
Recommendation [82.0801585843835]
We propose a novel self-supervised learning framework based on Mutual WasserStein discrepancy minimization MStein for the sequential recommendation.
We also propose a novel contrastive learning loss based on Wasserstein Discrepancy Measurement.
arXiv Detail & Related papers (2023-01-28T13:38:48Z) - Do Bayesian Variational Autoencoders Know What They Don't Know? [0.6091702876917279]
The problem of detecting the Out-of-Distribution (OoD) inputs is paramount importance for Deep Neural Networks.
It has been previously shown that even Deep Generative Models that allow estimating the density of the inputs may not be reliable.
This paper investigates three approaches to inference: Markov chain Monte Carlo, Bayes gradient by Backpropagation and Weight Averaging-Gaussian.
arXiv Detail & Related papers (2022-12-29T11:48:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.