論文の概要: Network Tomography with Path-Centric Graph Neural Network
- arxiv url: http://arxiv.org/abs/2502.16430v1
- Date: Sun, 23 Feb 2025 04:08:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:53:17.934846
- Title: Network Tomography with Path-Centric Graph Neural Network
- Title(参考訳): パス中心グラフニューラルネットワークを用いたネットワークトモグラフィ
- Authors: Yuntong Hu, Junxiang Wang, Liang Zhao,
- Abstract要約: 我々は、優れたネットワークトモグラフィーは、データと(部分的な)事前知識からの適切な帰納バイアスの両方から知識を相乗化する必要があると論じる。
パス中心グラフニューラルネットワークを用いてパス性能メトリクスを予測する新しいフレームワークであるDeep Network Tomography (DeepNT)を提案する。
- 参考スコア(独自算出の注目度): 8.789611631435024
- License:
- Abstract: Network tomography is a crucial problem in network monitoring, where the observable path performance metric values are used to infer the unobserved ones, making it essential for tasks such as route selection, fault diagnosis, and traffic control. However, most existing methods either assume complete knowledge of network topology and metric formulas-an unrealistic expectation in many real-world scenarios with limited observability-or rely entirely on black-box end-to-end models. To tackle this, in this paper, we argue that a good network tomography requires synergizing the knowledge from both data and appropriate inductive bias from (partial) prior knowledge. To see this, we propose Deep Network Tomography (DeepNT), a novel framework that leverages a path-centric graph neural network to predict path performance metrics without relying on predefined hand-crafted metrics, assumptions, or the real network topology. The path-centric graph neural network learns the path embedding by inferring and aggregating the embeddings of the sequence of nodes that compose this path. Training path-centric graph neural networks requires learning the neural netowrk parameters and network topology under discrete constraints induced by the observed path performance metrics, which motivates us to design a learning objective that imposes connectivity and sparsity constraints on topology and path performance triangle inequality on path performance. Extensive experiments on real-world and synthetic datasets demonstrate the superiority of DeepNT in predicting performance metrics and inferring graph topology compared to state-of-the-art methods.
- Abstract(参考訳): ネットワークトモグラフィーはネットワーク監視において重要な問題であり、観測可能な経路性能測定値を用いて未観測経路を推定し、経路選択、故障診断、交通制御といったタスクに不可欠である。
しかし、既存のほとんどの手法は、ネットワークトポロジと計量公式の完全な知識を前提としており、観測可能性に制限がある多くの現実のシナリオでは非現実的な予測であり、ブラックボックスのエンドツーエンドモデルに完全に依存している。
そこで本論文では,優れたネットワークトモグラフィには,データからの知識の相乗化と,(部分的)事前知識からの適切な帰納バイアスが必要であることを論じる。
これを確認するために、パス中心のグラフニューラルネットワークを活用して、事前に定義された手作りのメトリクスや仮定、実際のネットワークトポロジに頼ることなく、パスパフォーマンスメトリクスを予測する新しいフレームワークであるDeep Network Tomography(DeepNT)を提案する。
経路中心グラフニューラルネットワークは、この経路を構成するノード列の埋め込みを推論して集約することにより、経路埋め込みを学習する。
経路中心グラフニューラルネットワークのトレーニングには、観測された経路性能指標によって誘導される離散的な制約の下で、ニューラルネットワークパラメータとネットワークトポロジを学習する必要がある。
実世界のデータセットと合成データセットに関する大規模な実験は、DeepNTがパフォーマンスメトリクスを予測し、グラフトポロジを最先端の手法と比較する際の優位性を実証している。
関連論文リスト
- DFA-GNN: Forward Learning of Graph Neural Networks by Direct Feedback Alignment [57.62885438406724]
グラフニューラルネットワークは、様々なアプリケーションにまたがる強力なパフォーマンスで認識されている。
BPには、その生物学的妥当性に挑戦する制限があり、グラフベースのタスクのためのトレーニングニューラルネットワークの効率、スケーラビリティ、並列性に影響を与える。
半教師付き学習のケーススタディを用いて,GNNに適した新しい前方学習フレームワークであるDFA-GNNを提案する。
論文 参考訳(メタデータ) (2024-06-04T07:24:51Z) - Deep Neural Networks via Complex Network Theory: a Perspective [3.1023851130450684]
ディープニューラルネットワーク(DNN)は、リンクと頂点が反復的にデータを処理し、タスクを亜最適に解くグラフとして表現することができる。複雑なネットワーク理論(CNT)は、統計物理学とグラフ理論を融合させ、その重みとニューロン構造を分析してニューラルネットワークを解釈する方法を提供する。
本研究では,DNNのトレーニング分布から抽出した測定値を用いて既存のCNTメトリクスを拡張し,純粋なトポロジカル解析からディープラーニングの解釈可能性へ移行する。
論文 参考訳(メタデータ) (2024-04-17T08:42:42Z) - Applying Self-supervised Learning to Network Intrusion Detection for
Network Flows with Graph Neural Network [8.318363497010969]
本稿では,教師なし型ネットワークフローの特定のためのGNNの適用について検討する。
我々の知る限り、NIDSにおけるネットワークフローのマルチクラス分類のための最初のGNNベースの自己教師方式である。
論文 参考訳(メタデータ) (2024-03-03T12:34:13Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
神経の持続性に影響を与える主な要因は,ネットワークの重みのばらつきと大きな重みの空間集中である。
単一層ではなく,ニューラルネットワーク全体へのニューラルネットワークの持続性に基づくフィルタリングの拡張を提案する。
これにより、ネットワーク内の永続的なパスを暗黙的に取り込み、分散に関連する問題を緩和するディープグラフの永続性測定が得られます。
論文 参考訳(メタデータ) (2023-07-20T13:34:11Z) - Rewiring Networks for Graph Neural Network Training Using Discrete
Geometry [0.0]
情報オーバースカッシングはグラフニューラルネットワーク(GNN)のトレーニングに大きな影響を与える問題である
本稿では,ネットワーク上の情報の流れをモデル化し,それらを再構成するために,古典幾何学的な曲率の概念の離散アナログを用いて検討する。
これらの古典的概念は、様々な実世界のネットワークデータセット上でのGNNトレーニング精度において、最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-07-16T21:50:39Z) - Quasi-orthogonality and intrinsic dimensions as measures of learning and
generalisation [55.80128181112308]
ニューラルネットワークの特徴空間の次元性と準直交性は、ネットワークの性能差別と共同して機能する可能性があることを示す。
本研究は, ネットワークの最終的な性能と, ランダムに初期化された特徴空間の特性との関係を示唆する。
論文 参考訳(メタデータ) (2022-03-30T21:47:32Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
本稿では,ネットワークを解析のための完全なグラフに表現するためのトポロジ的視点を提案する。
接続の規模を反映したエッジに学習可能なパラメータを割り当てることにより、学習プロセスを異なる方法で行うことができる。
この学習プロセスは既存のネットワークと互換性があり、より大きな検索空間と異なるタスクへの適応性を持っている。
論文 参考訳(メタデータ) (2020-08-19T04:53:31Z) - Progressive Graph Convolutional Networks for Semi-Supervised Node
Classification [97.14064057840089]
グラフ畳み込みネットワークは、半教師付きノード分類のようなグラフベースのタスクに対処することに成功した。
本稿では,コンパクトかつタスク固有のグラフ畳み込みネットワークを自動構築する手法を提案する。
論文 参考訳(メタデータ) (2020-03-27T08:32:16Z) - Neural Network Tomography [4.407668482702675]
ネットワークトモグラフィーはネットワーク監視の領域における古典的な研究課題である。
NeuTomographyは、未測定のパフォーマンス指標を予測するために、ディープニューラルネットワークとデータ拡張を利用する。
NeuTomographyは、元のネットワークトポロジを再構築するために使用できる。
論文 参考訳(メタデータ) (2020-01-09T12:19:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。