Sequence-level Large Language Model Training with Contrastive Preference Optimization
- URL: http://arxiv.org/abs/2502.16433v1
- Date: Sun, 23 Feb 2025 04:13:27 GMT
- Title: Sequence-level Large Language Model Training with Contrastive Preference Optimization
- Authors: Zhili Feng, Dhananjay Ram, Cole Hawkins, Aditya Rawal, Jinman Zhao, Sheng Zha,
- Abstract summary: Next token prediction loss is the dominant self-supervised training objective for large language models.<n>We introduce a contrastive preference optimization (CPO) procedure that can inject sequence-level information into the language model.<n>Our experiments show that the proposed objective surpasses the next token prediction in terms of win rate in the instruction-following and text generation tasks.
- Score: 11.098564726949972
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The next token prediction loss is the dominant self-supervised training objective for large language models and has achieved promising results in a variety of downstream tasks. However, upon closer investigation of this objective, we find that it lacks an understanding of sequence-level signals, leading to a mismatch between training and inference processes. To bridge this gap, we introduce a contrastive preference optimization (CPO) procedure that can inject sequence-level information into the language model at any training stage without expensive human labeled data. Our experiments show that the proposed objective surpasses the next token prediction in terms of win rate in the instruction-following and text generation tasks.
Related papers
- A Supervised Contrastive Learning Pretrain-Finetune Approach for Time
Series [15.218841180577135]
We introduce a novel pretraining procedure that leverages supervised contrastive learning to distinguish features within each pretraining dataset.
We then propose a fine-tuning procedure designed to enhance the accurate prediction of the target data by aligning it more closely with the learned dynamics of the pretraining datasets.
arXiv Detail & Related papers (2023-11-21T02:06:52Z) - Instruction Position Matters in Sequence Generation with Large Language
Models [67.87516654892343]
Large language models (LLMs) are capable of performing conditional sequence generation tasks, such as translation or summarization.
We propose enhancing the instruction-following capability of LLMs by shifting the position of task instructions after the input sentences.
arXiv Detail & Related papers (2023-08-23T12:36:57Z) - Curricular Transfer Learning for Sentence Encoded Tasks [0.0]
This article proposes a sequence of pre-training steps guided by "data hacking" and grammar analysis.
In our experiments, we acquire a considerable improvement from our method compared to other known pre-training approaches for the MultiWoZ task.
arXiv Detail & Related papers (2023-08-03T16:18:19Z) - Towards Linguistically Informed Multi-Objective Pre-Training for Natural
Language Inference [0.38233569758620045]
We introduce a linguistically enhanced combination of pre-training methods for transformers.
The pre-training objectives include POS-tagging, synset prediction based on semantic knowledge graphs, and parent prediction based on dependency parse trees.
Our approach achieves competitive results on the Natural Language Inference task, compared to the state of the art.
arXiv Detail & Related papers (2022-12-14T10:50:13Z) - Few-shot Subgoal Planning with Language Models [58.11102061150875]
We show that language priors encoded in pre-trained language models allow us to infer fine-grained subgoal sequences.
In contrast to recent methods which make strong assumptions about subgoal supervision, our experiments show that language models can infer detailed subgoal sequences without any fine-tuning.
arXiv Detail & Related papers (2022-05-28T01:03:30Z) - A Generative Language Model for Few-shot Aspect-Based Sentiment Analysis [90.24921443175514]
We focus on aspect-based sentiment analysis, which involves extracting aspect term, category, and predicting their corresponding polarities.
We propose to reformulate the extraction and prediction tasks into the sequence generation task, using a generative language model with unidirectional attention.
Our approach outperforms the previous state-of-the-art (based on BERT) on average performance by a large margins in few-shot and full-shot settings.
arXiv Detail & Related papers (2022-04-11T18:31:53Z) - Bridging the Gap between Language Models and Cross-Lingual Sequence
Labeling [101.74165219364264]
Large-scale cross-lingual pre-trained language models (xPLMs) have shown effectiveness in cross-lingual sequence labeling tasks.
Despite the great success, we draw an empirical observation that there is a training objective gap between pre-training and fine-tuning stages.
In this paper, we first design a pre-training task tailored for xSL named Cross-lingual Language Informative Span Masking (CLISM) to eliminate the objective gap.
Second, we present ContrAstive-Consistency Regularization (CACR), which utilizes contrastive learning to encourage the consistency between representations of input parallel
arXiv Detail & Related papers (2022-04-11T15:55:20Z) - Improved Fine-tuning by Leveraging Pre-training Data: Theory and
Practice [52.11183787786718]
Fine-tuning a pre-trained model on the target data is widely used in many deep learning applications.
Recent studies have empirically shown that training from scratch has the final performance that is no worse than this pre-training strategy.
We propose a novel selection strategy to select a subset from pre-training data to help improve the generalization on the target task.
arXiv Detail & Related papers (2021-11-24T06:18:32Z) - Pre-training Text Representations as Meta Learning [113.3361289756749]
We introduce a learning algorithm which directly optimize model's ability to learn text representations for effective learning of downstream tasks.
We show that there is an intrinsic connection between multi-task pre-training and model-agnostic meta-learning with a sequence of meta-train steps.
arXiv Detail & Related papers (2020-04-12T09:05:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.