MAPN: Enhancing Heterogeneous Sparse Graph Representation by Mamba-based Asynchronous Aggregation
- URL: http://arxiv.org/abs/2502.16454v1
- Date: Sun, 23 Feb 2025 06:02:31 GMT
- Title: MAPN: Enhancing Heterogeneous Sparse Graph Representation by Mamba-based Asynchronous Aggregation
- Authors: Xuqi Mao, Zhenying He, X. Sean Wang,
- Abstract summary: This paper introduces the Mamba-based Asynchronous Propagation Network (MAPN), which enhances the representation of heterogeneous sparse graphs.<n> MAPN consists of two primary components: node sequence generation and semantic information aggregation.<n>Extensive experiments across diverse datasets demonstrate the effectiveness of MAPN in graph embeddings for various downstream tasks.
- Score: 4.114908634432608
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs) have become the state of the art for various graph-related tasks and are particularly prominent in heterogeneous graphs (HetGs). However, several issues plague this paradigm: first, the difficulty in fully utilizing long-range information, known as over-squashing; second, the tendency for excessive message-passing layers to produce indistinguishable representations, referred to as over-smoothing; and finally, the inadequacy of conventional MPNNs to train effectively on large sparse graphs. To address these challenges in deep neural networks for large-scale heterogeneous graphs, this paper introduces the Mamba-based Asynchronous Propagation Network (MAPN), which enhances the representation of heterogeneous sparse graphs. MAPN consists of two primary components: node sequence generation and semantic information aggregation. Node sequences are initially generated based on meta-paths through random walks, which serve as the foundation for a spatial state model that extracts essential information from nodes at various distances. It then asynchronously aggregates semantic information across multiple hops and layers, effectively preserving unique node characteristics and mitigating issues related to deep network degradation. Extensive experiments across diverse datasets demonstrate the effectiveness of MAPN in graph embeddings for various downstream tasks underscoring its substantial benefits for graph representation in large sparse heterogeneous graphs.
Related papers
- GRAIN: Multi-Granular and Implicit Information Aggregation Graph Neural Network for Heterophilous Graphs [11.458759345322832]
Granular and Implicit Graph Network (GRAIN) is a novel GNN model specifically designed for heterophilous graphs.
GRAIN enhances node embeddings by aggregating multi-view information at various levels and incorporating implicit data from distant, non-neighboring nodes.
We also introduce an adaptive graph information aggregator that efficiently combines multi-granularity and implicit data, significantly improving node representation quality.
arXiv Detail & Related papers (2025-04-09T07:36:44Z) - DuoGNN: Topology-aware Graph Neural Network with Homophily and Heterophily Interaction-Decoupling [0.0]
Graph Neural Networks (GNNs) have proven effective in various medical imaging applications, such as automated disease diagnosis.
They inherently suffer from two fundamental limitations: first, indistinguishable node embeddings due to heterophilic node aggregation.
We propose DuoGNN, a scalable and generalizable architecture which leverages topology to decouple homophilic and heterophilic edges.
arXiv Detail & Related papers (2024-09-29T09:01:22Z) - Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
The ubiquity of large-scale graphs in node-classification tasks hinders the real-world applications of Graph Neural Networks (GNNs)
This paper studies graph coresets for GNNs and avoids the interdependence issue by selecting ego-graphs based on their spectral embeddings.
Our spectral greedy graph coreset (SGGC) scales to graphs with millions of nodes, obviates the need for model pre-training, and applies to low-homophily graphs.
arXiv Detail & Related papers (2024-05-27T17:52:12Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
We propose a novel heterogeneous graph neural network with sequential node representation, namely Seq-HGNN.
We conduct extensive experiments on four widely used datasets from Heterogeneous Graph Benchmark (HGB) and Open Graph Benchmark (OGB)
arXiv Detail & Related papers (2023-05-18T07:27:18Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - Simple and Efficient Heterogeneous Graph Neural Network [55.56564522532328]
Heterogeneous graph neural networks (HGNNs) have powerful capability to embed rich structural and semantic information of a heterogeneous graph into node representations.
Existing HGNNs inherit many mechanisms from graph neural networks (GNNs) over homogeneous graphs, especially the attention mechanism and the multi-layer structure.
This paper conducts an in-depth and detailed study of these mechanisms and proposes Simple and Efficient Heterogeneous Graph Neural Network (SeHGNN)
arXiv Detail & Related papers (2022-07-06T10:01:46Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
We show that in typical heterphilous graphs, the edges may be directed, and whether to treat the edges as is or simply make them undirected greatly affects the performance of the GNN models.
We develop a model that adaptively learns the directionality of the graph, and exploits the underlying long-distance correlations between nodes.
arXiv Detail & Related papers (2021-11-19T08:54:21Z) - Hierarchical graph neural nets can capture long-range interactions [8.067880298298185]
We study hierarchical message passing models that leverage a multi-resolution representation of a given graph.
This facilitates learning of features that span large receptive fields without loss of local information.
We introduce Hierarchical Graph Net (HGNet), which for any two connected nodes guarantees existence of message-passing paths of at most logarithmic length.
arXiv Detail & Related papers (2021-07-15T16:24:22Z) - Multi-hop Attention Graph Neural Network [70.21119504298078]
Multi-hop Attention Graph Neural Network (MAGNA) is a principled way to incorporate multi-hop context information into every layer of attention computation.
We show that MAGNA captures large-scale structural information in every layer, and has a low-pass effect that eliminates noisy high-frequency information from graph data.
arXiv Detail & Related papers (2020-09-29T22:41:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.