DuoGNN: Topology-aware Graph Neural Network with Homophily and Heterophily Interaction-Decoupling
- URL: http://arxiv.org/abs/2409.19616v2
- Date: Sun, 3 Nov 2024 09:23:33 GMT
- Title: DuoGNN: Topology-aware Graph Neural Network with Homophily and Heterophily Interaction-Decoupling
- Authors: K. Mancini, I. Rekik,
- Abstract summary: Graph Neural Networks (GNNs) have proven effective in various medical imaging applications, such as automated disease diagnosis.
They inherently suffer from two fundamental limitations: first, indistinguishable node embeddings due to heterophilic node aggregation.
We propose DuoGNN, a scalable and generalizable architecture which leverages topology to decouple homophilic and heterophilic edges.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) have proven effective in various medical imaging applications, such as automated disease diagnosis. However, due to the local neighborhood aggregation paradigm in message passing which characterizes these models, they inherently suffer from two fundamental limitations: first, indistinguishable node embeddings due to heterophilic node aggregation (known as over-smoothing), and second, impaired message passing due to aggregation through graph bottlenecks (known as over-squashing). These challenges hinder the model expressiveness and prevent us from using deeper models to capture long-range node dependencies within the graph. Popular solutions in the literature are either too expensive to process large graphs due to high time complexity or do not generalize across all graph topologies. To address these limitations, we propose DuoGNN, a scalable and generalizable architecture which leverages topology to decouple homophilic and heterophilic edges and capture both short-range and long-range interactions. Our three core contributions introduce (i) a topological edge-filtering algorithm which extracts homophilic interactions and enables the model to generalize well for any graph topology, (ii) a heterophilic graph condensation technique which extracts heterophilic interactions and ensures scalability, and (iii) a dual homophilic and heterophilic aggregation pipeline which prevents over-smoothing and over-squashing during the message passing. We benchmark our model on medical and non-medical node classification datasets and compare it with its variants, showing consistent improvements across all tasks. Our DuoGNN code is available at https://github.com/basiralab/DuoGNN.
Related papers
- The Heterophilic Graph Learning Handbook: Benchmarks, Models, Theoretical Analysis, Applications and Challenges [101.83124435649358]
Homophily principle, ie nodes with the same labels or similar attributes are more likely to be connected.
Recent work has identified a non-trivial set of datasets where GNN's performance compared to the NN's is not satisfactory.
arXiv Detail & Related papers (2024-07-12T18:04:32Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Addressing Heterophily in Node Classification with Graph Echo State
Networks [11.52174067809364]
We address the challenges of heterophilic graphs with Graph Echo State Network (GESN) for node classification.
GESN is a reservoir computing model for graphs, where node embeddings are computed by an untrained message-passing function.
Our experiments show that reservoir models are able to achieve better or comparable accuracy with respect to most fully trained deep models.
arXiv Detail & Related papers (2023-05-14T19:42:31Z) - Beyond Homophily: Reconstructing Structure for Graph-agnostic Clustering [15.764819403555512]
It is impossible to first identify a graph as homophilic or heterophilic before a suitable GNN model can be found.
We propose a novel graph clustering method, which contains three key components: graph reconstruction, a mixed filter, and dual graph clustering network.
Our method dominates others on heterophilic graphs.
arXiv Detail & Related papers (2023-05-03T01:49:01Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
We consider the problem of modelling high-dimensional distributions and generating new examples of data with complex relational feature structure coherent with a graph skeleton.
The model we propose tackles the problem of generating the data features constrained by the specific graph structure of each data point by splitting the task into two phases.
In the first it models the distribution of features associated with the nodes of the given graph, in the second it complements the edge features conditionally on the node features.
arXiv Detail & Related papers (2022-12-01T11:49:07Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - ES-GNN: Generalizing Graph Neural Networks Beyond Homophily with Edge Splitting [32.69196871253339]
We propose a novel Edge Splitting GNN (ES-GNN) framework to adaptively distinguish between graph edges either relevant or irrelevant to learning tasks.
We show that our ES-GNN can be regarded as a solution to a disentangled graph denoising problem.
arXiv Detail & Related papers (2022-05-27T01:29:03Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
Heterogeneous graph neural network (HGNN) is a very popular technique for the modeling and analysis of heterogeneous graphs.
We develop for the first time a novel and robust heterogeneous graph contrastive learning approach, namely HGCL, which introduces two views on respective guidance of node attributes and graph topologies.
In this new approach, we adopt distinct but most suitable attribute and topology fusion mechanisms in the two views, which are conducive to mining relevant information in attributes and topologies separately.
arXiv Detail & Related papers (2022-04-30T12:57:02Z) - Incorporating Heterophily into Graph Neural Networks for Graph Classification [6.709862924279403]
Graph Neural Networks (GNNs) often assume strong homophily for graph classification, seldom considering heterophily.
We develop a novel GNN architecture called IHGNN (short for Incorporating Heterophily into Graph Neural Networks)
We empirically validate IHGNN on various graph datasets and demonstrate that it outperforms the state-of-the-art GNNs for graph classification.
arXiv Detail & Related papers (2022-03-15T06:48:35Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
We show that in typical heterphilous graphs, the edges may be directed, and whether to treat the edges as is or simply make them undirected greatly affects the performance of the GNN models.
We develop a model that adaptively learns the directionality of the graph, and exploits the underlying long-distance correlations between nodes.
arXiv Detail & Related papers (2021-11-19T08:54:21Z) - Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised
Node Classification [59.06717774425588]
We propose the Explicit Pairwise Factorized Graph Neural Network (EPFGNN), which models the whole graph as a partially observed Markov Random Field.
It contains explicit pairwise factors to model output-output relations and uses a GNN backbone to model input-output relations.
We conduct experiments on various datasets, which shows that our model can effectively improve the performance for semi-supervised node classification on graphs.
arXiv Detail & Related papers (2021-07-27T19:47:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.