論文の概要: Unmasking Societal Biases in Respiratory Support for ICU Patients through Social Determinants of Health
- arxiv url: http://arxiv.org/abs/2502.16477v1
- Date: Sun, 23 Feb 2025 07:23:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:59:41.640613
- Title: Unmasking Societal Biases in Respiratory Support for ICU Patients through Social Determinants of Health
- Title(参考訳): 健康決定因子によるICU患者の呼吸支援における社会的バイアスの解離
- Authors: Mira Moukheiber, Lama Moukheiber, Dana Moukheiber, Hyung-Chul Lee,
- Abstract要約: 本研究は,機械的換気の延長と織りの成功という,臨床的に動機づけられた2つの課題に焦点を当てた。
我々は、集中治療室内の呼吸介入における健康上の不平等をよりよく理解するために、人口統計グループおよび健康の社会的決定要因にわたるモデルの予測に関する公正な監査を行う。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In critical care settings, where precise and timely interventions are crucial for health outcomes, evaluating disparities in patient outcomes is essential. Current approaches often fail to fully capture the impact of respiratory support interventions on individuals affected by social determinants of health. While attributes such as gender, race, and age are commonly assessed and provide valuable insights, they offer only a partial view of the complexities faced by diverse populations. In this study, we focus on two clinically motivated tasks: prolonged mechanical ventilation and successful weaning. Additionally, we conduct fairness audits on the models' predictions across demographic groups and social determinants of health to better understand health inequities in respiratory interventions within the intensive care unit. Furthermore, we release a temporal benchmark dataset, verified by clinical experts, to facilitate benchmarking of clinical respiratory intervention tasks.
- Abstract(参考訳): 正確な時間的介入が健康的な結果に不可欠であるクリティカルケア環境では、患者の結果の格差を評価することが不可欠である。
現在のアプローチでは、健康の社会的決定要因によって影響を受ける個人に対する呼吸サポート介入の影響を完全に把握できないことが多い。
性別、人種、年齢などの属性は一般的に評価され、価値ある洞察を与えるが、それらは多様な人口が直面する複雑さを部分的に見るだけである。
本研究は,機械的換気の延長と織りの成功という,臨床的に動機づけられた2つの課題に焦点を当てた。
さらに,集中治療室内における呼吸介入の健康的不平等をよりよく理解するために,人口集団および健康の社会的決定要因を対象としたモデル予測の公正度監査を実施している。
さらに,臨床専門家によって検証された時間的ベンチマークデータセットを公開し,臨床呼吸介入作業のベンチマーク作成を容易にする。
関連論文リスト
- Fairness in Computational Innovations: Identifying Bias in Substance Use Treatment Length of Stay Prediction Models with Policy Implications [0.477529483515826]
予測機械学習(英: Predictive Machine Learning, ML)は、医学的意思決定を強化する計算技術である。
しかし、社会的バイアスはそのようなモデルにエンコードすることができ、不利なグループの健康結果に不注意に影響を及ぼす懸念を提起する。
この問題は、物質使用障害(SUD)の治療の文脈において特に重要であり、予測モデルのバイアスは、非常に脆弱な患者の回復に大きな影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2024-12-08T06:47:23Z) - Machine learning-based algorithms for at-home respiratory disease monitoring and respiratory assessment [45.104212062055424]
本研究の目的は、在宅呼吸器疾患のモニタリングと評価を容易にする機械学習ベースのアルゴリズムを開発することである。
健常成人30名を対象に, 呼吸圧, 血流, 胸腹部周囲の動的計測を行った。
ランダムフォレスト分類器、ロジスティック回帰、サポートベクターマシン(SVM)など、さまざまな機械学習モデルをトレーニングし、呼吸タイプを予測する。
論文 参考訳(メタデータ) (2024-09-05T02:14:31Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
本研究は, スマートフォンで撮影した画像と本質的な臨床および人口統計情報を統合することで, 皮膚病変を分類する新しいマルチモーダル手法を提案する。
この手法の特徴は、超高解像度画像予測に焦点を当てた補助的なタスクの統合である。
PAD-UFES20データセットを用いて,様々なディープラーニングアーキテクチャを用いて実験を行った。
論文 参考訳(メタデータ) (2024-02-16T05:16:20Z) - MR-STGN: Multi-Residual Spatio Temporal Graph Network Using Attention
Fusion for Patient Action Assessment [0.3626013617212666]
MR-STGN(Multi-Residual Spatio Temporal Graph Network)を用いた患者行動評価の自動化手法を提案する。
MR-STGNは患者行動のダイナミクスを捉えるように設計されている。
リアルタイムの患者行動スコアを正確に予測する上で,UI-PRMDデータセットの性能を示すモデルについて検討した。
論文 参考訳(メタデータ) (2023-12-21T01:09:52Z) - Towards Safe Mechanical Ventilation Treatment Using Deep Offline
Reinforcement Learning [35.10140674005337]
DeepVentは、保守的なQ-Learning(CQL)ベースのオフラインのDeep Reinforcement Learning(DRL)エージェントで、90日間の生存を促進するための最適な人工呼吸器パラメータを予測することを学習する。
DeepVentは、最近の臨床試験で概説されているように、安全な範囲で換気パラメータを推奨している。
CQLアルゴリズムは、アウト・オブ・ディストリビューション状態/アクションの値推定の過大評価を緩和することで、さらなる安全性を提供する。
論文 参考訳(メタデータ) (2022-10-05T20:41:17Z) - Predicting Patient Readmission Risk from Medical Text via Knowledge
Graph Enhanced Multiview Graph Convolution [67.72545656557858]
本稿では,電子健康記録の医用テキストを予測に用いる新しい手法を提案する。
外部知識グラフによって強化された多視点グラフを有する患者の退院サマリーを表現している。
実験により,本手法の有効性が証明され,最先端の性能が得られた。
論文 参考訳(メタデータ) (2021-12-19T01:45:57Z) - Disentangled Counterfactual Recurrent Networks for Treatment Effect
Inference over Time [71.30985926640659]
本稿では,DCRN(Disentangled Counterfactual Recurrent Network)を提案する。
時間とともに治療効果の因果構造に完全にインスパイアされたアーキテクチャでは、予測精度と疾患理解が向上する。
実データとシミュレーションデータの両方において,DCRNが処理応答予測の最先端手法より優れていることを示す。
論文 参考訳(メタデータ) (2021-12-07T16:40:28Z) - A Multi-Modal Respiratory Disease Exacerbation Prediction Technique
Based on a Spatio-Temporal Machine Learning Architecture [0.0]
慢性閉塞性肺疾患や喘息などの慢性呼吸器疾患は深刻な健康危機である。
呼吸器症状の進行を評価する現在の方法は、主観的で不正確な、または複雑で面倒です。
本研究は、新しい時間的機械学習アーキテクチャに基づいて、PDなどの呼吸器疾患の悪化リスクを予測するためのマルチモーダルソリューションを提案する。
論文 参考訳(メタデータ) (2021-03-03T05:24:53Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
本稿では,患者の医療旅行におけるコンテキスト依存と時間的関係を捉える,新たな自己注意機構を提案する。
エンド・ツー・エンドの双方向時間エンコーダネットワーク(BiteNet)が患者の旅路の表現を学習する。
実世界のEHRデータセットを用いた2つの教師付き予測と2つの教師なしクラスタリングタスクにおける手法の有効性を評価した。
論文 参考訳(メタデータ) (2020-09-24T00:42:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。