Audio-FLAN: A Preliminary Release
- URL: http://arxiv.org/abs/2502.16584v1
- Date: Sun, 23 Feb 2025 14:24:15 GMT
- Title: Audio-FLAN: A Preliminary Release
- Authors: Liumeng Xue, Ziya Zhou, Jiahao Pan, Zixuan Li, Shuai Fan, Yinghao Ma, Sitong Cheng, Dongchao Yang, Haohan Guo, Yujia Xiao, Xinsheng Wang, Zixuan Shen, Chuanbo Zhu, Xinshen Zhang, Tianchi Liu, Ruibin Yuan, Zeyue Tian, Haohe Liu, Emmanouil Benetos, Ge Zhang, Yike Guo, Wei Xue,
- Abstract summary: We introduce Audio-FLAN, a large-scale instruction-tuning dataset covering 80 diverse tasks across speech, music, and sound domains.<n>Audio-FLAN lays the foundation for unified audio-language models that can seamlessly handle both understanding and generation.
- Score: 34.97548432398912
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in audio tokenization have significantly enhanced the integration of audio capabilities into large language models (LLMs). However, audio understanding and generation are often treated as distinct tasks, hindering the development of truly unified audio-language models. While instruction tuning has demonstrated remarkable success in improving generalization and zero-shot learning across text and vision, its application to audio remains largely unexplored. A major obstacle is the lack of comprehensive datasets that unify audio understanding and generation. To address this, we introduce Audio-FLAN, a large-scale instruction-tuning dataset covering 80 diverse tasks across speech, music, and sound domains, with over 100 million instances. Audio-FLAN lays the foundation for unified audio-language models that can seamlessly handle both understanding (e.g., transcription, comprehension) and generation (e.g., speech, music, sound) tasks across a wide range of audio domains in a zero-shot manner. The Audio-FLAN dataset is available on HuggingFace and GitHub and will be continuously updated.
Related papers
- Baichuan-Audio: A Unified Framework for End-to-End Speech Interaction [9.101978573666546]
Baichuan-Audio is an end-to-end audio large language model that seamlessly integrates audio understanding and generation.
It features a text-guided aligned speech generation mechanism, enabling real-time speech interaction with both comprehension and generation capabilities.
arXiv Detail & Related papers (2025-02-24T15:16:34Z) - AudioSetMix: Enhancing Audio-Language Datasets with LLM-Assisted Augmentations [1.2101820447447276]
Multi-modal learning in the audio-language domain has seen significant advancements in recent years.
However, audio-language learning faces challenges due to limited and lower-quality data compared to image-language tasks.
Our method systematically generates audio-caption pairs by augmenting audio clips with natural language labels and corresponding audio signal processing operations.
This scalable method produces AudioSetMix, a high-quality training dataset for text-and-audio related models.
arXiv Detail & Related papers (2024-05-17T21:08:58Z) - XLAVS-R: Cross-Lingual Audio-Visual Speech Representation Learning for Noise-Robust Speech Perception [62.660135152900615]
Speech recognition and translation systems perform poorly on noisy inputs.
XLAVS-R is a cross-lingual audio-visual speech representation model for noise-robust speech recognition and translation.
arXiv Detail & Related papers (2024-03-21T13:52:17Z) - Qwen-Audio: Advancing Universal Audio Understanding via Unified
Large-Scale Audio-Language Models [98.34889301515412]
We develop the Qwen-Audio model and address the limitation by scaling up audio-language pre-training to cover over 30 tasks and various audio types.
Qwen-Audio achieves impressive performance across diverse benchmark tasks without requiring any task-specific fine-tuning.
We further develop Qwen-Audio-Chat, which allows for input from various audios and text inputs, enabling multi-turn dialogues and supporting various audio-central scenarios.
arXiv Detail & Related papers (2023-11-14T05:34:50Z) - LauraGPT: Listen, Attend, Understand, and Regenerate Audio with GPT [65.69648099999439]
Generative Pre-trained Transformer (GPT) models have achieved remarkable performance on various natural language processing tasks.
We propose LauraGPT, a novel unified audio-and-text GPT-based LLM for audio recognition, understanding, and generation.
arXiv Detail & Related papers (2023-10-07T03:17:59Z) - Exploring the Role of Audio in Video Captioning [59.679122191706426]
We present an audio-visual framework, which aims to fully exploit the potential of the audio modality for captioning.
We propose new local-global fusion mechanisms to improve information exchange across audio and video.
arXiv Detail & Related papers (2023-06-21T20:54:52Z) - AudioGPT: Understanding and Generating Speech, Music, Sound, and Talking
Head [82.69233563811487]
Large language models (LLMs) have exhibited remarkable capabilities across a variety of domains and tasks, challenging our understanding of learning and cognition.
We propose a multi-modal AI system named AudioGPT, which complements LLMs with foundation models to process complex audio information.
arXiv Detail & Related papers (2023-04-25T17:05:38Z) - Make-An-Audio: Text-To-Audio Generation with Prompt-Enhanced Diffusion
Models [65.18102159618631]
multimodal generative modeling has created milestones in text-to-image and text-to-video generation.
Its application to audio still lags behind for two main reasons: the lack of large-scale datasets with high-quality text-audio pairs, and the complexity of modeling long continuous audio data.
We propose Make-An-Audio with a prompt-enhanced diffusion model that addresses these gaps.
arXiv Detail & Related papers (2023-01-30T04:44:34Z) - AudioLM: a Language Modeling Approach to Audio Generation [59.19364975706805]
We introduce AudioLM, a framework for high-quality audio generation with long-term consistency.
We show how existing audio tokenizers provide different trade-offs between reconstruction quality and long-term structure.
We demonstrate how our approach extends beyond speech by generating coherent piano music continuations.
arXiv Detail & Related papers (2022-09-07T13:40:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.