Understanding the Impact of Artificial Intelligence in Academic Writing: Metadata to the Rescue
- URL: http://arxiv.org/abs/2502.16713v1
- Date: Sun, 23 Feb 2025 21:10:44 GMT
- Title: Understanding the Impact of Artificial Intelligence in Academic Writing: Metadata to the Rescue
- Authors: Javier Conde, Pedro Reviriego, Joaquín Salvachúa, Gonzalo Martínez, José Alberto Hernández, Fabrizio Lombardi,
- Abstract summary: This column advocates for including artificial intelligence (AI)-specific metadata on those academic papers that are written with the help of AI.<n>This is an attempt to analyze the use of such tools for disseminating research.
- Score: 5.906689377130112
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This column advocates for including artificial intelligence (AI)-specific metadata on those academic papers that are written with the help of AI in an attempt to analyze the use of such tools for disseminating research.
Related papers
- Patterns and Purposes: A Cross-Journal Analysis of AI Tool Usage in Academic Writing [0.266512000865131]
This study analyzed 168 AI declarations from 8,859 articles across 27 categories.<n>ChatGPT dominates academic writing assistance (77% usage), with significant differences in tool usage between native and non-native English speakers.<n>The study reveals that improving readability (51%) and grammar checking (22%) are the primary purposes of AI tool usage.
arXiv Detail & Related papers (2025-02-02T02:44:33Z) - Machine Learning Innovations in CPR: A Comprehensive Survey on Enhanced Resuscitation Techniques [52.71395121577439]
This survey paper explores the transformative role of Machine Learning (ML) and Artificial Intelligence (AI) in Cardiopulmonary Resuscitation (CPR)
It highlights the impact of predictive modeling, AI-enhanced devices, and real-time data analysis in improving resuscitation outcomes.
The paper provides a comprehensive overview, classification, and critical analysis of current applications, challenges, and future directions in this emerging field.
arXiv Detail & Related papers (2024-11-03T18:01:50Z) - The Artificial Intelligence Disclosure (AID) Framework: An Introduction [0.0]
This article introduces The Artificial Intelligence Disclosure (AID) Framework, a standard, comprehensive, and detailed framework meant to inform the development and writing of GenAI disclosure for education and research.
arXiv Detail & Related papers (2024-08-04T02:18:42Z) - The Impact of AI on Academic Research and Publishing [0.6144680854063939]
Generative artificial intelligence (AI) technologies like ChatGPT have significantly impacted academic writing and publishing.
This paper examines ethical considerations surrounding the integration of AI into academia, focusing on the potential for this technology to be used for scholarly misconduct.
The findings highlight the need for collaborative approaches to AI usage among publishers, editors, reviewers, and authors to ensure that this technology is used ethically and productively.
arXiv Detail & Related papers (2024-06-10T04:10:18Z) - Perceptions and Detection of AI Use in Manuscript Preparation for
Academic Journals [1.881901067333374]
Large Language Models (LLMs) have produced both excitement and worry about how AI will impact academic writing.
Authors of academic publications may decide to voluntarily disclose any AI tools they use to revise their manuscripts.
journals and conferences could begin mandating disclosure and/or turn to using detection services.
arXiv Detail & Related papers (2023-11-19T06:04:46Z) - Explainable Authorship Identification in Cultural Heritage Applications:
Analysis of a New Perspective [48.031678295495574]
We explore the applicability of existing general-purpose eXplainable Artificial Intelligence (XAI) techniques to AId.
In particular, we assess the relative merits of three different types of XAI techniques on three different AId tasks.
Our analysis shows that, while these techniques make important first steps towards explainable Authorship Identification, more work remains to be done.
arXiv Detail & Related papers (2023-11-03T20:51:15Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
The benefits, challenges and drawbacks of AI in this field are reviewed.
The use of data augmentation, explainable AI, and the integration of AI with traditional experimental methods are also discussed.
arXiv Detail & Related papers (2022-12-08T23:23:39Z) - Artificial Intelligence in Concrete Materials: A Scientometric View [77.34726150561087]
This chapter aims to uncover the main research interests and knowledge structure of the existing literature on AI for concrete materials.
To begin with, a total of 389 journal articles published from 1990 to 2020 were retrieved from the Web of Science.
Scientometric tools such as keyword co-occurrence analysis and documentation co-citation analysis were adopted to quantify features and characteristics of the research field.
arXiv Detail & Related papers (2022-09-17T18:24:56Z) - Stakeholder Participation in AI: Beyond "Add Diverse Stakeholders and
Stir" [76.44130385507894]
This paper aims to ground what we dub a 'participatory turn' in AI design by synthesizing existing literature on participation and through empirical analysis of its current practices.
Based on our literature synthesis and empirical research, this paper presents a conceptual framework for analyzing participatory approaches to AI design.
arXiv Detail & Related papers (2021-11-01T17:57:04Z) - Measuring Ethics in AI with AI: A Methodology and Dataset Construction [1.6861004263551447]
We propose to use such newfound capabilities of AI technologies to augment our AI measuring capabilities.
We do so by training a model to classify publications related to ethical issues and concerns.
We highlight the implications of AI metrics, in particular their contribution towards developing trustful and fair AI-based tools and technologies.
arXiv Detail & Related papers (2021-07-26T00:26:12Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
We instantiate the concept of structure of scientific explanation as the theoretical underpinning for a general framework in which explanations for AI systems can be implemented.
This framework aims to provide the tools to build a "mental-model" of any AI system so that the interaction with the user can provide information on demand and be closer to the nature of human-made explanations.
arXiv Detail & Related papers (2020-03-02T10:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.