GS-TransUNet: Integrated 2D Gaussian Splatting and Transformer UNet for Accurate Skin Lesion Analysis
- URL: http://arxiv.org/abs/2502.16748v1
- Date: Sun, 23 Feb 2025 23:28:47 GMT
- Title: GS-TransUNet: Integrated 2D Gaussian Splatting and Transformer UNet for Accurate Skin Lesion Analysis
- Authors: Anand Kumar, Kavinder Roghit Kanthen, Josna John,
- Abstract summary: We present a novel approach that combines 2D Gaussian splatting with the Transformer UNet architecture for automated skin cancer diagnosis.<n>Our findings illustrate significant advancements in the precision of segmentation and classification.<n>This integration sets new benchmarks in the field and highlights the potential for further research into multi-task medical image analysis methodologies.
- Score: 44.99833362998488
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We can achieve fast and consistent early skin cancer detection with recent developments in computer vision and deep learning techniques. However, the existing skin lesion segmentation and classification prediction models run independently, thus missing potential efficiencies from their integrated execution. To unify skin lesion analysis, our paper presents the Gaussian Splatting - Transformer UNet (GS-TransUNet), a novel approach that synergistically combines 2D Gaussian splatting with the Transformer UNet architecture for automated skin cancer diagnosis. Our unified deep learning model efficiently delivers dual-function skin lesion classification and segmentation for clinical diagnosis. Evaluated on ISIC-2017 and PH2 datasets, our network demonstrates superior performance compared to existing state-of-the-art models across multiple metrics through 5-fold cross-validation. Our findings illustrate significant advancements in the precision of segmentation and classification. This integration sets new benchmarks in the field and highlights the potential for further research into multi-task medical image analysis methodologies, promising enhancements in automated diagnostic systems.
Related papers
- Towards Accurate and Interpretable Neuroblastoma Diagnosis via Contrastive Multi-scale Pathological Image Analysis [16.268045905735818]
CMSwinKAN is a contrastive-learning-based multi-scale feature fusion model tailored for pathological image classification.
We introduce a soft voting mechanism guided by clinical insights to seamlessly bridge patch-level predictions to whole slide image-level classifications.
Results demonstrate that CMSwinKAN performs better than existing state-of-the-art pathology-specific models pre-trained on large datasets.
arXiv Detail & Related papers (2025-04-18T15:39:46Z) - Multi-Scale Transformer Architecture for Accurate Medical Image Classification [4.578375402082224]
This study introduces an AI-driven skin lesion classification algorithm built on an enhanced Transformer architecture.<n>By integrating a multi-scale feature fusion mechanism and refining the self-attention process, the model effectively extracts both global and local features.<n>Performance evaluation on the ISIC 2017 dataset demonstrates that the improved Transformer surpasses established AI models.
arXiv Detail & Related papers (2025-02-10T08:22:25Z) - A Cascaded Dilated Convolution Approach for Mpox Lesion Classification [0.0]
Mpox virus presents significant diagnostic challenges due to its visual similarity to other skin lesion diseases.<n>Deep learning-based approaches for skin lesion classification offer a promising alternative.<n>This study introduces the Cascaded Atrous Group Attention framework to address these challenges.
arXiv Detail & Related papers (2024-12-13T12:47:30Z) - Multi-modal Medical Image Fusion For Non-Small Cell Lung Cancer Classification [7.002657345547741]
Non-small cell lung cancer (NSCLC) is a predominant cause of cancer mortality worldwide.
In this paper, we introduce an innovative integration of multi-modal data, synthesizing fused medical imaging (CT and PET scans) with clinical health records and genomic data.
Our research surpasses existing approaches, as evidenced by a substantial enhancement in NSCLC detection and classification precision.
arXiv Detail & Related papers (2024-09-27T12:59:29Z) - Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI [58.809276442508256]
We propose a hybrid network via the combination of convolution neural network (CNN) and transformer layers.
The experimental results on private and public DCE-MRI datasets demonstrate that the proposed hybrid network superior performance than the state-of-the-art methods.
arXiv Detail & Related papers (2024-08-11T15:46:00Z) - Potential of Multimodal Large Language Models for Data Mining of Medical Images and Free-text Reports [51.45762396192655]
Multimodal large language models (MLLMs) have recently transformed many domains, significantly affecting the medical field. Notably, Gemini-Vision-series (Gemini) and GPT-4-series (GPT-4) models have epitomized a paradigm shift in Artificial General Intelligence for computer vision.
This study evaluated the performance of the Gemini, GPT-4, and 4 popular large models for an exhaustive evaluation across 14 medical imaging datasets.
arXiv Detail & Related papers (2024-07-08T09:08:42Z) - Skin Cancer Segmentation and Classification Using Vision Transformer for
Automatic Analysis in Dermatoscopy-based Non-invasive Digital System [0.0]
This study introduces a groundbreaking approach to skin cancer classification, employing the Vision Transformer.
The Vision Transformer is a state-of-the-art deep learning architecture renowned for its success in diverse image analysis tasks.
The Segment Anything Model aids in precise segmentation of cancerous areas, attaining high IOU and Dice Coefficient.
arXiv Detail & Related papers (2024-01-09T11:22:54Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Lesion Net -- Skin Lesion Segmentation Using Coordinate Convolution and
Deep Residual Units [18.908448254745473]
The accuracy of segmenting melanomas skin lesions is quite a challenging task due to less data for training, irregular shapes, unclear boundaries, and different skin colors.
Our proposed approach helps in improving the accuracy of skin lesion segmentation.
The results show that the proposed model either outperform or at par with the existing skin lesion segmentation methods.
arXiv Detail & Related papers (2020-12-28T14:43:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.