A Cascaded Dilated Convolution Approach for Mpox Lesion Classification
- URL: http://arxiv.org/abs/2412.10106v4
- Date: Tue, 14 Jan 2025 03:43:02 GMT
- Title: A Cascaded Dilated Convolution Approach for Mpox Lesion Classification
- Authors: Ayush Deshmukh,
- Abstract summary: Mpox virus presents significant diagnostic challenges due to its visual similarity to other skin lesion diseases.
Deep learning-based approaches for skin lesion classification offer a promising alternative.
This study introduces the Cascaded Atrous Group Attention framework to address these challenges.
- Score: 0.0
- License:
- Abstract: The global outbreak of the Mpox virus, classified as a Public Health Emergency of International Concern (PHEIC) by the World Health Organization, presents significant diagnostic challenges due to its visual similarity to other skin lesion diseases. Traditional diagnostic methods for Mpox, which rely on clinical symptoms and laboratory tests, are slow and labor intensive. Deep learning-based approaches for skin lesion classification offer a promising alternative. However, developing a model that balances efficiency with accuracy is crucial to ensure reliable and timely diagnosis without compromising performance. This study introduces the Cascaded Atrous Group Attention (CAGA) framework to address these challenges, combining the Cascaded Atrous Attention module and the Cascaded Group Attention mechanism. The Cascaded Atrous Attention module utilizes dilated convolutions and cascades the outputs to enhance multi-scale representation. This is integrated into the Cascaded Group Attention mechanism, which reduces redundancy in Multi-Head Self-Attention. By integrating the Cascaded Atrous Group Attention module with EfficientViT-L1 as the backbone architecture, this approach achieves state-of-the-art performance, reaching an accuracy of 98% on the Mpox Close Skin Image (MCSI) dataset while reducing model parameters by 37.5% compared to the original EfficientViT-L1. The model's robustness is demonstrated through extensive validation on two additional benchmark datasets, where it consistently outperforms existing approaches.
Related papers
- ActiveSSF: An Active-Learning-Guided Self-Supervised Framework for Long-Tailed Megakaryocyte Classification [3.6535793744942318]
We propose the ActiveSSF framework, which integrates active learning with self-supervised pretraining.
Experimental results on clinical megakaryocyte datasets demonstrate that ActiveSSF achieves state-of-the-art performance.
To foster further research, the code and datasets will be publicly released in the future.
arXiv Detail & Related papers (2025-02-12T08:24:36Z) - Multimodal Outer Arithmetic Block Dual Fusion of Whole Slide Images and Omics Data for Precision Oncology [6.418265127069878]
We propose the use of omic embeddings during early and late fusion to capture complementary information from local (patch-level) to global (slide-level) interactions.
This dual fusion strategy enhances interpretability and classification performance, highlighting its potential for clinical diagnostics.
arXiv Detail & Related papers (2024-11-26T13:25:53Z) - Towards Synergistic Deep Learning Models for Volumetric Cirrhotic Liver Segmentation in MRIs [1.5228650878164722]
Liver cirrhosis, a leading cause of global mortality, requires precise segmentation of ROIs for effective disease monitoring and treatment planning.
Existing segmentation models often fail to capture complex feature interactions and generalize across diverse datasets.
We propose a novel synergistic theory that leverages complementary latent spaces for enhanced feature interaction modeling.
arXiv Detail & Related papers (2024-08-08T14:41:32Z) - Advancing UWF-SLO Vessel Segmentation with Source-Free Active Domain Adaptation and a Novel Multi-Center Dataset [11.494899967255142]
Accurate vessel segmentation in UWF-SLO images is crucial for diagnosing retinal diseases.
manually labeling high-resolution UWF-SLO images is an extremely challenging, time-consuming and expensive task.
This study introduces a pioneering framework that leverages a patch-based active domain adaptation approach.
arXiv Detail & Related papers (2024-06-19T15:49:06Z) - Monkeypox disease recognition model based on improved SE-InceptionV3 [0.0]
This study introduces an improved SE-InceptionV3 model, embedding the SENet module and incorporating L2 regularization into the InceptionV3 framework to enhance monkeypox disease detection.
Our model demonstrates a noteworthy accuracy of 96.71% on the test set, outperforming conventional methods and deep learning models.
arXiv Detail & Related papers (2024-03-15T08:01:44Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
Deep learning models have shown promise for automatically segmenting MS lesions, but the scarcity of accurately annotated data hinders progress in this area.
We introduce a Decoupled Hard Label Correction (DHLC) strategy that considers the imbalanced distribution and fuzzy boundaries of MS lesions.
We also introduce a Centrally Enhanced Label Correction (CELC) strategy, which leverages the aggregated central model as a correction teacher for all sites.
arXiv Detail & Related papers (2023-08-31T00:36:10Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - Brain Imaging-to-Graph Generation using Adversarial Hierarchical Diffusion Models for MCI Causality Analysis [44.45598796591008]
Brain imaging-to-graph generation (BIGG) framework is proposed to map functional magnetic resonance imaging (fMRI) into effective connectivity for mild cognitive impairment analysis.
The hierarchical transformers in the generator are designed to estimate the noise at multiple scales.
Evaluations of the ADNI dataset demonstrate the feasibility and efficacy of the proposed model.
arXiv Detail & Related papers (2023-05-18T06:54:56Z) - Boundary Guided Semantic Learning for Real-time COVID-19 Lung Infection
Segmentation System [69.40329819373954]
The coronavirus disease 2019 (COVID-19) continues to have a negative impact on healthcare systems around the world.
At the current stage, automatically segmenting the lung infection area from CT images is essential for the diagnosis and treatment of COVID-19.
We propose a boundary guided semantic learning network (BSNet) in this paper.
arXiv Detail & Related papers (2022-09-07T05:01:38Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Statistical control for spatio-temporal MEG/EEG source imaging with
desparsified multi-task Lasso [102.84915019938413]
Non-invasive techniques like magnetoencephalography (MEG) or electroencephalography (EEG) offer promise of non-invasive techniques.
The problem of source localization, or source imaging, poses however a high-dimensional statistical inference challenge.
We propose an ensemble of desparsified multi-task Lasso (ecd-MTLasso) to deal with this problem.
arXiv Detail & Related papers (2020-09-29T21:17:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.