論文の概要: Entailment-Preserving First-order Logic Representations in Natural Language Entailment
- arxiv url: http://arxiv.org/abs/2502.16757v1
- Date: Mon, 24 Feb 2025 00:18:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:55:23.728422
- Title: Entailment-Preserving First-order Logic Representations in Natural Language Entailment
- Title(参考訳): 自然言語エンタテインメントにおけるエンタテインメント保存一階論理表現
- Authors: Jinu Lee, Qi Liu, Runzhi Ma, Vincent Han, Ziqi Wang, Heng Ji, Julia Hockenmaier,
- Abstract要約: 一階述語論理(FOL)は、自然言語(NL)文の論理的含意意味を表現できる。
本稿では,FOL 表現の細部を格納するタスクを提案する。
本稿では,EPF(Entailment-Preserving Rate family)の基準フリー評価指標について紹介する。
- 参考スコア(独自算出の注目度): 45.606252724468796
- License:
- Abstract: First-order logic (FOL) can represent the logical entailment semantics of natural language (NL) sentences, but determining natural language entailment using FOL remains a challenge. To address this, we propose the Entailment-Preserving FOL representations (EPF) task and introduce reference-free evaluation metrics for EPF, the Entailment-Preserving Rate (EPR) family. In EPF, one should generate FOL representations from multi-premise natural language entailment data (e.g. EntailmentBank) so that the automatic prover's result preserves the entailment labels. Experiments show that existing methods for NL-to-FOL translation struggle in EPF. To this extent, we propose a training method specialized for the task, iterative learning-to-rank, which directly optimizes the model's EPR score through a novel scoring function and a learning-to-rank objective. Our method achieves a 1.8-2.7% improvement in EPR and a 17.4-20.6% increase in EPR@16 compared to diverse baselines in three datasets. Further analyses reveal that iterative learning-to-rank effectively suppresses the arbitrariness of FOL representation by reducing the diversity of predicate signatures, and maintains strong performance across diverse inference types and out-of-domain data.
- Abstract(参考訳): 一階述語論理(FOL)は、自然言語(NL)文の論理的含意意味を表現できるが、FOLを用いた自然言語含意の決定は依然として課題である。
そこで本研究では,EPF(Entailment-Preserving FOL representations)タスクを提案し,EPF(Entailment-Preserving Rate, EPR)ファミリーの参照不要評価指標を提案する。
EPFでは,複数分野の自然言語エンタテインメントデータ(例えばEntailmentBank)からFOL表現を生成して,自動証明器の結果がエンタテインメントラベルを保存する。
実験により,EPFにおけるNL-to-FOL翻訳の既存の手法が困難であることが確認された。
そこで本研究では,新しいスコアリング機能と学習目標を介し,モデルのEPRスコアを直接最適化する,反復学習 to ランクタスクに特化したトレーニング手法を提案する。
提案手法は,EPRの1.8~2.7%の改善,EPR@16の17.4~20.6%の増加を実現している。
さらに、反復学習 to ランクは、述語シグネチャの多様性を減らし、FOL表現の任意性を効果的に抑制し、様々な推論タイプやドメイン外データにまたがる強い性能を維持することを明らかにする。
関連論文リスト
- Co-training for Low Resource Scientific Natural Language Inference [65.37685198688538]
遠隔教師付きラベルに分類器のトレーニング力学に基づいて重みを割り当てる新しいコトレーニング手法を提案する。
予測された信頼度に対する任意のしきい値に基づいてサンプルをフィルタリングするのではなく、重要重みを割り当てることにより、自動ラベル付きデータの使用を最大化する。
提案手法は、遠隔監視ベースラインに対するマクロF1の1.5%の改善と、他の強力なSSLベースラインよりも大幅に改善されている。
論文 参考訳(メタデータ) (2024-06-20T18:35:47Z) - Cross-domain Chinese Sentence Pattern Parsing [67.1381983012038]
文パターン構造解析(SPS)は、主に言語教育に使用される構文解析法である。
既存のSPSは教科書のコーパスに大きく依存しており、クロスドメイン機能に欠ける。
本稿では,大規模言語モデル(LLM)を自己学習フレームワーク内で活用する革新的な手法を提案する。
論文 参考訳(メタデータ) (2024-02-26T05:30:48Z) - Reranking for Natural Language Generation from Logical Forms: A Study
based on Large Language Models [47.08364281023261]
大規模言語モデル(LLM)は、自然言語生成において印象的な能力を示している。
しかし、それらの出力品質は矛盾する可能性があり、論理形式(LF)から自然言語を生成する上での課題を提起する。
論文 参考訳(メタデータ) (2023-09-21T17:54:58Z) - Compositional Exemplars for In-context Learning [21.961094715261133]
大規模な事前学習言語モデル(LM)は、印象的なインコンテキスト学習(ICL)能力を示している。
本稿では,CEIL (Compositional Exemplars for In-context Learning) を提案する。
我々は、感情分析、パラフレーズ検出、自然言語推論、コモンセンス推論、オープンドメイン質問応答、コード生成、意味解析を含む7つの異なるNLPタスクから、CEILを12の分類および生成データセットで検証する。
論文 参考訳(メタデータ) (2023-02-11T14:02:08Z) - CROP: Zero-shot Cross-lingual Named Entity Recognition with Multilingual
Labeled Sequence Translation [113.99145386490639]
言語間NERは、整列した言語間表現や機械翻訳結果を通じて、言語間で知識を伝達することができる。
ゼロショット言語間NERを実現するために,クロスランガル・エンティティ・プロジェクション・フレームワーク(CROP)を提案する。
多言語ラベル付きシーケンス翻訳モデルを用いて、タグ付けされたシーケンスをターゲット言語に投影し、ターゲットの原文にラベル付けする。
論文 参考訳(メタデータ) (2022-10-13T13:32:36Z) - SLM: Learning a Discourse Language Representation with Sentence
Unshuffling [53.42814722621715]
談話言語表現を学習するための新しい事前学習目的である文レベル言語モデリングを導入する。
本モデルでは,この特徴により,従来のBERTの性能が大幅に向上することを示す。
論文 参考訳(メタデータ) (2020-10-30T13:33:41Z) - Discriminatively-Tuned Generative Classifiers for Robust Natural
Language Inference [59.62779187457773]
自然言語推論のための生成型分類器(NLI)を提案する。
差別モデルやBERTのような大規模事前学習言語表現モデルを含む5つのベースラインと比較する。
実験の結果、GenNLIはいくつかの挑戦的なNLI実験環境において差別的ベースラインと事前訓練ベースラインの両方に優れていた。
論文 参考訳(メタデータ) (2020-10-08T04:44:00Z) - Exploring Neural Models for Parsing Natural Language into First-Order
Logic [10.62143644603835]
英文を1次論理(FOL)に解析する際のニューラルモデルの有用性について検討する。
自然言語文が与えられた場合のシーケンスマッピングタスクとしてFOL解析をモデル化し、LSTMを用いて中間表現に符号化し、次に対応するFOL式で述語を逐次生成するデコーダを用いる。
論文 参考訳(メタデータ) (2020-02-16T09:22:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。