The Robustness of Structural Features in Species Interaction Networks
- URL: http://arxiv.org/abs/2502.16778v1
- Date: Mon, 24 Feb 2025 02:14:17 GMT
- Title: The Robustness of Structural Features in Species Interaction Networks
- Authors: Sanaz Hasanzadeh Fard, Emily Dolson,
- Abstract summary: Species interaction networks are a powerful tool for describing ecological communities.<n>We analyzed 148 real-world bipartite networks representing four different types of species interactions.<n>We found substantial variation in how robust different properties were to the missing data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Species interaction networks are a powerful tool for describing ecological communities; they typically contain nodes representing species, and edges representing interactions between those species. For the purposes of drawing abstract inferences about groups of similar networks, ecologists often use graph topology metrics to summarize structural features. However, gathering the data that underlies these networks is challenging, which can lead to some interactions being missed. Thus, it is important to understand how much different structural metrics are affected by missing data. To address this question, we analyzed a database of 148 real-world bipartite networks representing four different types of species interactions (pollination, host-parasite, plant-ant, and seed-dispersal). For each network, we measured six different topological properties: number of connected components, variance in node betweenness, variance in node PageRank, largest Eigenvalue, the number of non-zero Eigenvalues, and community detection as determined by four different algorithms. We then tested how these properties change as additional edges -- representing data that may have been missed -- are added to the networks. We found substantial variation in how robust different properties were to the missing data. For example, the Clauset-Newman-Moore and Louvain community detection algorithms showed much more gradual change as edges were added than the label propagation and Girvan-Newman algorithms did, suggesting that the former are more robust. Robustness also varied for some metrics based on interaction type. These results provide a foundation for selecting network properties to use when analyzing messy ecological network data.
Related papers
- Matcha: Mitigating Graph Structure Shifts with Test-Time Adaptation [66.40525136929398]
Test-time adaptation (TTA) has attracted attention due to its ability to adapt a pre-trained model to a target domain, without re-accessing the source domain.<n>We propose Matcha, an innovative framework designed for effective and efficient adaptation to structure shifts in graphs.<n>We validate the effectiveness of Matcha on both synthetic and real-world datasets, demonstrating its robustness across various combinations of structure and attribute shifts.
arXiv Detail & Related papers (2024-10-09T15:15:40Z) - Sifting out communities in large sparse networks [2.666294200266662]
We introduce an intuitive objective function for quantifying the quality of clustering results in large sparse networks.
We utilize a two-step method for identifying communities which is especially well-suited for this domain.
We identify complex genetic interactions in large-scale networks comprised of tens of thousands of nodes.
arXiv Detail & Related papers (2024-05-01T18:57:41Z) - A rank decomposition for the topological classification of neural representations [0.0]
In this work, we leverage the fact that neural networks are equivalent to continuous piecewise-affine maps.
We study the homology groups of the quotient of a manifold $mathcalM$ and a subset $A$, assuming some minimal properties on these spaces.
We show that in randomly narrow networks, there will be regions in which the (co)homology groups of a data manifold can change.
arXiv Detail & Related papers (2024-04-30T17:01:20Z) - Classification of vertices on social networks by multiple approaches [1.370151489527964]
In the case of social networks, it is crucial to evaluate the labels of discrete communities.
For each of these interaction-based entities, a social graph, a mailing dataset, and two citation sets are selected as the testbench repositories.
This paper was not only assessed the most valuable method but also determined how graph neural networks work.
arXiv Detail & Related papers (2023-01-13T09:42:55Z) - Multiplex Heterogeneous Graph Convolutional Network [25.494590588212542]
This work proposes a Multiplex Heterogeneous Graph Convolutional Network (MHGCN) for heterogeneous network embedding.
Our MHGCN can automatically learn the useful heterogeneous meta-path interactions of different lengths in multiplex heterogeneous networks.
arXiv Detail & Related papers (2022-08-12T06:17:54Z) - The interplay between ranking and communities in networks [0.0]
We present a generative model based on an interplay between community and hierarchical structures.
It assumes that each node has a preference in the interaction mechanism and nodes with the same preference are more likely to interact.
We demonstrate our method on synthetic and real-world data and compare performance with two standard approaches for community detection and ranking extraction.
arXiv Detail & Related papers (2021-12-23T16:10:28Z) - Dive into Layers: Neural Network Capacity Bounding using Algebraic
Geometry [55.57953219617467]
We show that the learnability of a neural network is directly related to its size.
We use Betti numbers to measure the topological geometric complexity of input data and the neural network.
We perform the experiments on a real-world dataset MNIST and the results verify our analysis and conclusion.
arXiv Detail & Related papers (2021-09-03T11:45:51Z) - Learning distinct features helps, provably [98.78384185493624]
We study the diversity of the features learned by a two-layer neural network trained with the least squares loss.
We measure the diversity by the average $L$-distance between the hidden-layer features.
arXiv Detail & Related papers (2021-06-10T19:14:45Z) - Reinforced Neighborhood Selection Guided Multi-Relational Graph Neural
Networks [68.9026534589483]
RioGNN is a novel Reinforced, recursive and flexible neighborhood selection guided multi-relational Graph Neural Network architecture.
RioGNN can learn more discriminative node embedding with enhanced explainability due to the recognition of individual importance of each relation.
arXiv Detail & Related papers (2021-04-16T04:30:06Z) - On the use of local structural properties for improving the efficiency
of hierarchical community detection methods [77.34726150561087]
We study how local structural network properties can be used as proxies to improve the efficiency of hierarchical community detection.
We also check the performance impact of network prunings as an ancillary tactic to make hierarchical community detection more efficient.
arXiv Detail & Related papers (2020-09-15T00:16:12Z) - Detecting Communities in Heterogeneous Multi-Relational Networks:A
Message Passing based Approach [89.19237792558687]
Community is a common characteristic of networks including social networks, biological networks, computer and information networks.
We propose an efficient message passing based algorithm to simultaneously detect communities for all homogeneous networks.
arXiv Detail & Related papers (2020-04-06T17:36:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.