Sifting out communities in large sparse networks
- URL: http://arxiv.org/abs/2405.00816v1
- Date: Wed, 1 May 2024 18:57:41 GMT
- Title: Sifting out communities in large sparse networks
- Authors: Sharlee Climer, Kenneth Smith Jr, Wei Yang, Lisa de las Fuentes, Victor G. Dávila-Román, C. Charles Gu,
- Abstract summary: We introduce an intuitive objective function for quantifying the quality of clustering results in large sparse networks.
We utilize a two-step method for identifying communities which is especially well-suited for this domain.
We identify complex genetic interactions in large-scale networks comprised of tens of thousands of nodes.
- Score: 2.666294200266662
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Research data sets are growing to unprecedented sizes and network modeling is commonly used to extract complex relationships in diverse domains, such as genetic interactions involved in disease, logistics, and social communities. As the number of nodes increases in a network, an increasing sparsity of edges is a practical limitation due to memory restrictions. Moreover, many of these sparse networks exhibit very large numbers of nodes with no adjacent edges, as well as disjoint components of nodes with no edges connecting them. A prevalent aim in network modeling is the identification of clusters, or communities, of nodes that are highly interrelated. Several definitions of strong community structure have been introduced to facilitate this task, each with inherent assumptions and biases. We introduce an intuitive objective function for quantifying the quality of clustering results in large sparse networks. We utilize a two-step method for identifying communities which is especially well-suited for this domain as the first step efficiently divides the network into the disjoint components, while the second step optimizes clustering of the produced components based on the new objective. Using simulated networks, optimization based on the new objective function consistently yields significantly higher accuracy than those based on the modularity function, with the widest gaps appearing for the noisiest networks. Additionally, applications to benchmark problems illustrate the intuitive correctness of our approach. Finally, the practicality of our approach is demonstrated in real-world data in which we identify complex genetic interactions in large-scale networks comprised of tens of thousands of nodes. Based on these three different types of trials, our results clearly demonstrate the usefulness of our two-step procedure and the accuracy of our simple objective.
Related papers
- Unsupervised Graph Attention Autoencoder for Attributed Networks using
K-means Loss [0.0]
We introduce a simple, efficient, and clustering-oriented model based on unsupervised textbfGraph Attention textbfAutotextbfEncoder for community detection in attributed networks.
The proposed model adeptly learns representations from both the network's topology and attribute information, simultaneously addressing dual objectives: reconstruction and community discovery.
arXiv Detail & Related papers (2023-11-21T20:45:55Z) - A Unified Framework for Exploratory Learning-Aided Community Detection
Under Topological Uncertainty [16.280950663982107]
META-CODE is a unified framework for detecting overlapping communities in social networks.
It consists of three steps: 1) node-level community-affiliation embeddings based on graph neural networks (GNNs) trained by our new reconstruction loss, 2) network exploration via community-affiliation-based node queries, and 3) network inference using an edge connectivity-based Siamese neural network model from the explored network.
arXiv Detail & Related papers (2023-04-10T10:22:21Z) - Implicit models, latent compression, intrinsic biases, and cheap lunches
in community detection [0.0]
Community detection aims to partition a network into clusters of nodes to summarize its large-scale structure.
Some community detection methods are inferential, explicitly deriving the clustering objective through a probabilistic generative model.
Other methods are descriptive, dividing a network according to an objective motivated by a particular application.
We present a solution that associates any community detection objective, inferential or descriptive, with its corresponding implicit network generative model.
arXiv Detail & Related papers (2022-10-17T15:38:41Z) - Bayesian community detection for networks with covariates [16.230648949593153]
"Community detection" has arguably received the most attention in the scientific community.
We propose a block model with a co-dependent random partition prior.
Our model has the ability to learn the number of the communities via posterior inference without having to assume it to be known.
arXiv Detail & Related papers (2022-03-04T01:58:35Z) - Community detection using low-dimensional network embedding algorithms [1.052782170493037]
We rigorously understand the performance of two major algorithms, DeepWalk and node2vec, in recovering communities for canonical network models.
We prove that, given some fixed co-occurrence window, node2vec using random walks with a low non-backtracking probability can succeed for much sparser networks.
arXiv Detail & Related papers (2021-11-04T14:57:43Z) - Unsupervised Domain-adaptive Hash for Networks [81.49184987430333]
Domain-adaptive hash learning has enjoyed considerable success in the computer vision community.
We develop an unsupervised domain-adaptive hash learning method for networks, dubbed UDAH.
arXiv Detail & Related papers (2021-08-20T12:09:38Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - On the use of local structural properties for improving the efficiency
of hierarchical community detection methods [77.34726150561087]
We study how local structural network properties can be used as proxies to improve the efficiency of hierarchical community detection.
We also check the performance impact of network prunings as an ancillary tactic to make hierarchical community detection more efficient.
arXiv Detail & Related papers (2020-09-15T00:16:12Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
We propose a topological perspective to represent a network into a complete graph for analysis.
By assigning learnable parameters to the edges which reflect the magnitude of connections, the learning process can be performed in a differentiable manner.
This learning process is compatible with existing networks and owns adaptability to larger search spaces and different tasks.
arXiv Detail & Related papers (2020-08-19T04:53:31Z) - A Multi-Semantic Metapath Model for Large Scale Heterogeneous Network
Representation Learning [52.83948119677194]
We propose a multi-semantic metapath (MSM) model for large scale heterogeneous representation learning.
Specifically, we generate multi-semantic metapath-based random walks to construct the heterogeneous neighborhood to handle the unbalanced distributions.
We conduct systematical evaluations for the proposed framework on two challenging datasets: Amazon and Alibaba.
arXiv Detail & Related papers (2020-07-19T22:50:20Z) - Detecting Communities in Heterogeneous Multi-Relational Networks:A
Message Passing based Approach [89.19237792558687]
Community is a common characteristic of networks including social networks, biological networks, computer and information networks.
We propose an efficient message passing based algorithm to simultaneously detect communities for all homogeneous networks.
arXiv Detail & Related papers (2020-04-06T17:36:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.