MobileSteward: Integrating Multiple App-Oriented Agents with Self-Evolution to Automate Cross-App Instructions
- URL: http://arxiv.org/abs/2502.16796v1
- Date: Mon, 24 Feb 2025 03:12:45 GMT
- Title: MobileSteward: Integrating Multiple App-Oriented Agents with Self-Evolution to Automate Cross-App Instructions
- Authors: Yuxuan Liu, Hongda Sun, Wei Liu, Jian Luan, Bo Du, Rui Yan,
- Abstract summary: Mobile phone agents can assist people in automating daily tasks on their phones.<n>Existing procedure-oriented agents struggle with cross-app instructions.<n>We propose a self-evolving multi-agent framework named MobileSteward.
- Score: 45.7564684180131
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mobile phone agents can assist people in automating daily tasks on their phones, which have emerged as a pivotal research spotlight. However, existing procedure-oriented agents struggle with cross-app instructions, due to the following challenges: (1) complex task relationships, (2) diverse app environment, and (3) error propagation and information loss in multi-step execution. Drawing inspiration from object-oriented programming principles, we recognize that object-oriented solutions is more suitable for cross-app instruction. To address these challenges, we propose a self-evolving multi-agent framework named MobileSteward, which integrates multiple app-oriented StaffAgents coordinated by a centralized StewardAgent. We design three specialized modules in MobileSteward: (1) Dynamic Recruitment generates a scheduling graph guided by information flow to explicitly associate tasks among apps. (2) Assigned Execution assigns the task to app-oriented StaffAgents, each equipped with app-specialized expertise to address the diversity between apps. (3) Adjusted Evaluation conducts evaluation to provide reflection tips or deliver key information, which alleviates error propagation and information loss during multi-step execution. To continuously improve the performance of MobileSteward, we develop a Memory-based Self-evolution mechanism, which summarizes the experience from successful execution, to improve the performance of MobileSteward. We establish the first English Cross-APP Benchmark (CAPBench) in the real-world environment to evaluate the agents' capabilities of solving complex cross-app instructions. Experimental results demonstrate that MobileSteward achieves the best performance compared to both single-agent and multi-agent frameworks, highlighting the superiority of MobileSteward in better handling user instructions with diverse complexity.
Related papers
- PC-Agent: A Hierarchical Multi-Agent Collaboration Framework for Complex Task Automation on PC [98.82146219495792]
In this paper, we propose a hierarchical agent framework named PC-Agent.
From the perception perspective, we devise an Active Perception Module (APM) to overcome the inadequate abilities of current MLLMs in perceiving screenshot content.
From the decision-making perspective, to handle complex user instructions and interdependent subtasks more effectively, we propose a hierarchical multi-agent collaboration architecture.
arXiv Detail & Related papers (2025-02-20T05:41:55Z) - Mobile-Agent-E: Self-Evolving Mobile Assistant for Complex Tasks [85.48034185086169]
Mobile-Agent-E is a hierarchical multi-agent framework capable of self-evolution through past experience.<n>Mobile-Agent-E achieves a 22% absolute improvement over previous state-of-the-art approaches.
arXiv Detail & Related papers (2025-01-20T20:35:46Z) - Foundations and Recent Trends in Multimodal Mobile Agents: A Survey [57.677161006710065]
Mobile agents are essential for automating tasks in complex and dynamic mobile environments.
Recent advancements enhance real-time adaptability and multimodal interaction.
We categorize these advancements into two main approaches: prompt-based methods and training-based methods.
arXiv Detail & Related papers (2024-11-04T11:50:58Z) - SPA-Bench: A Comprehensive Benchmark for SmartPhone Agent Evaluation [89.24729958546168]
We present SPA-Bench, a comprehensive SmartPhone Agent Benchmark designed to evaluate (M)LLM-based agents.
SPA-Bench offers three key contributions: A diverse set of tasks covering system and third-party apps in both English and Chinese, focusing on features commonly used in daily routines.
A novel evaluation pipeline that automatically assesses agent performance across multiple dimensions, encompassing seven metrics related to task completion and resource consumption.
arXiv Detail & Related papers (2024-10-19T17:28:48Z) - MobileExperts: A Dynamic Tool-Enabled Agent Team in Mobile Devices [17.702068044185086]
This paper introduces MobileExperts, which for the first time introduces tool formulation and multi-agent collaboration.
We develop a dual-layer planning mechanism to establish coordinate collaboration among experts.
Experimental results demonstrate that MobileExperts performs better on all intelligence levels and achieves 22% reduction in reasoning costs.
arXiv Detail & Related papers (2024-07-04T13:12:19Z) - Mobile-Agent-v2: Mobile Device Operation Assistant with Effective Navigation via Multi-Agent Collaboration [52.25473993987409]
We propose Mobile-Agent-v2, a multi-agent architecture for mobile device operation assistance.
The architecture comprises three agents: planning agent, decision agent, and reflection agent.
We show that Mobile-Agent-v2 achieves over a 30% improvement in task completion compared to the single-agent architecture.
arXiv Detail & Related papers (2024-06-03T05:50:00Z) - AppAgent: Multimodal Agents as Smartphone Users [23.318925173980446]
Our framework enables the agent to operate smartphone applications through a simplified action space.
The agent learns to navigate and use new apps either through autonomous exploration or by observing human demonstrations.
To demonstrate the practicality of our agent, we conducted extensive testing over 50 tasks in 10 different applications.
arXiv Detail & Related papers (2023-12-21T11:52:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.