CRTrack: Low-Light Semi-Supervised Multi-object Tracking Based on Consistency Regularization
- URL: http://arxiv.org/abs/2502.16809v1
- Date: Mon, 24 Feb 2025 03:35:38 GMT
- Title: CRTrack: Low-Light Semi-Supervised Multi-object Tracking Based on Consistency Regularization
- Authors: Zijing Zhao, Jianlong Yu, Lin Zhang, Shunli Zhang,
- Abstract summary: We propose a semi-supervised multi-object tracking method based on consistency regularization named CRTrack.<n>First, we calibrate a consistent adaptive sampling assignment to replace the static IoU-based strategy.<n>Then, we design a adaptive semi-supervised network update method, which effectively leverages unannotated data to enhance model performance.
- Score: 9.878424965835883
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-object tracking under low-light environments is prevalent in real life. Recent years have seen rapid development in the field of multi-object tracking. However, due to the lack of datasets and the high cost of annotations, multi-object tracking under low-light environments remains a persistent challenge. In this paper, we focus on multi-object tracking under low-light conditions. To address the issues of limited data and the lack of dataset, we first constructed a low-light multi-object tracking dataset (LLMOT). This dataset comprises data from MOT17 that has been enhanced for nighttime conditions as well as multiple unannotated low-light videos. Subsequently, to tackle the high annotation costs and address the issue of image quality degradation, we propose a semi-supervised multi-object tracking method based on consistency regularization named CRTrack. First, we calibrate a consistent adaptive sampling assignment to replace the static IoU-based strategy, enabling the semi-supervised tracking method to resist noisy pseudo-bounding boxes. Then, we design a adaptive semi-supervised network update method, which effectively leverages unannotated data to enhance model performance. Dataset and Code: https://github.com/ZJZhao123/CRTrack.
Related papers
- MUST: The First Dataset and Unified Framework for Multispectral UAV Single Object Tracking [17.96400810834486]
We introduce the first large-scale Multispectral UAV Single Object Tracking dataset (MUST)
MUST includes 250 video sequences spanning diverse environments and challenges.
We also propose a novel tracking framework, UNTrack, which encodes unified spectral, spatial, and temporal features from spectrum prompts.
arXiv Detail & Related papers (2025-03-22T08:47:28Z) - MCTrack: A Unified 3D Multi-Object Tracking Framework for Autonomous Driving [10.399817864597347]
This paper introduces MCTrack, a new 3D multi-object tracking method that achieves state-of-the-art (SOTA) performance across KITTI, nuScenes, and datasets.
arXiv Detail & Related papers (2024-09-23T11:26:01Z) - Low-Light Object Tracking: A Benchmark [9.798869093713067]
We introduce LLOT, a benchmark specifically designed for Low-Light Object Tracking.
LLOT comprises 269 challenging sequences with a total of over 132K frames, each carefully annotated with bounding boxes.
In response, we propose H-DCPT, a novel tracker that incorporates historical and darkness clue prompts to set a stronger baseline.
arXiv Detail & Related papers (2024-08-21T09:27:57Z) - Multi-Object Tracking in the Dark [12.463106088827924]
Low-light scenes are prevalent in real-world applications (e.g. autonomous driving and surveillance at night)
In this paper, we focus on multi-object tracking in dark scenes.
We propose a low-light multi-object tracking method, termed as LTrack.
arXiv Detail & Related papers (2024-05-10T17:00:04Z) - SparseTrack: Multi-Object Tracking by Performing Scene Decomposition
based on Pseudo-Depth [84.64121608109087]
We propose a pseudo-depth estimation method for obtaining the relative depth of targets from 2D images.
Secondly, we design a depth cascading matching (DCM) algorithm, which can use the obtained depth information to convert a dense target set into multiple sparse target subsets.
By integrating the pseudo-depth method and the DCM strategy into the data association process, we propose a new tracker, called SparseTrack.
arXiv Detail & Related papers (2023-06-08T14:36:10Z) - DIVOTrack: A Novel Dataset and Baseline Method for Cross-View
Multi-Object Tracking in DIVerse Open Scenes [74.64897845999677]
We introduce a new cross-view multi-object tracking dataset for DIVerse Open scenes with dense tracking pedestrians.
Our DIVOTrack has fifteen distinct scenarios and 953 cross-view tracks, surpassing all cross-view multi-object tracking datasets currently available.
Furthermore, we provide a novel baseline cross-view tracking method with a unified joint detection and cross-view tracking framework named CrossMOT.
arXiv Detail & Related papers (2023-02-15T14:10:42Z) - End-to-end Tracking with a Multi-query Transformer [96.13468602635082]
Multiple-object tracking (MOT) is a challenging task that requires simultaneous reasoning about location, appearance, and identity of the objects in the scene over time.
Our aim in this paper is to move beyond tracking-by-detection approaches, to class-agnostic tracking that performs well also for unknown object classes.
arXiv Detail & Related papers (2022-10-26T10:19:37Z) - Unified Transformer Tracker for Object Tracking [58.65901124158068]
We present the Unified Transformer Tracker (UTT) to address tracking problems in different scenarios with one paradigm.
A track transformer is developed in our UTT to track the target in both Single Object Tracking (SOT) and Multiple Object Tracking (MOT)
arXiv Detail & Related papers (2022-03-29T01:38:49Z) - Learning to Track with Object Permanence [61.36492084090744]
We introduce an end-to-end trainable approach for joint object detection and tracking.
Our model, trained jointly on synthetic and real data, outperforms the state of the art on KITTI, and MOT17 datasets.
arXiv Detail & Related papers (2021-03-26T04:43:04Z) - SoDA: Multi-Object Tracking with Soft Data Association [75.39833486073597]
Multi-object tracking (MOT) is a prerequisite for a safe deployment of self-driving cars.
We propose a novel approach to MOT that uses attention to compute track embeddings that encode dependencies between observed objects.
arXiv Detail & Related papers (2020-08-18T03:40:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.