論文の概要: Leveraging Large Language Models for Effective and Explainable Multi-Agent Credit Assignment
- arxiv url: http://arxiv.org/abs/2502.16863v1
- Date: Mon, 24 Feb 2025 05:56:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:51:42.479593
- Title: Leveraging Large Language Models for Effective and Explainable Multi-Agent Credit Assignment
- Title(参考訳): 大規模言語モデルを有効かつ説明可能なマルチエージェント・クレジット・アサインメントに活用する
- Authors: Kartik Nagpal, Dayi Dong, Jean-Baptiste Bouvier, Negar Mehr,
- Abstract要約: シーケンス改善と帰属の2つのパターン認識問題に対する信用割当の修正方法を示す。
提案手法では,各エージェントの個々の貢献に基づいて,環境報酬を数値的に分解する集中型報酬批判を利用する。
どちらの手法も、Level-Based ForagingやRobotic Warehouse、衝突に関連する安全性の制約を取り入れたSpaceworldベンチマークなど、さまざまなベンチマークにおいて、最先端の手法よりもはるかに優れています。
- 参考スコア(独自算出の注目度): 4.406086834602686
- License:
- Abstract: Recent work, spanning from autonomous vehicle coordination to in-space assembly, has shown the importance of learning collaborative behavior for enabling robots to achieve shared goals. A common approach for learning this cooperative behavior is to utilize the centralized-training decentralized-execution paradigm. However, this approach also introduces a new challenge: how do we evaluate the contributions of each agent's actions to the overall success or failure of the team. This credit assignment problem has remained open, and has been extensively studied in the Multi-Agent Reinforcement Learning literature. In fact, humans manually inspecting agent behavior often generate better credit evaluations than existing methods. We combine this observation with recent works which show Large Language Models demonstrate human-level performance at many pattern recognition tasks. Our key idea is to reformulate credit assignment to the two pattern recognition problems of sequence improvement and attribution, which motivates our novel LLM-MCA method. Our approach utilizes a centralized LLM reward-critic which numerically decomposes the environment reward based on the individualized contribution of each agent in the scenario. We then update the agents' policy networks based on this feedback. We also propose an extension LLM-TACA where our LLM critic performs explicit task assignment by passing an intermediary goal directly to each agent policy in the scenario. Both our methods far outperform the state-of-the-art on a variety of benchmarks, including Level-Based Foraging, Robotic Warehouse, and our new Spaceworld benchmark which incorporates collision-related safety constraints. As an artifact of our methods, we generate large trajectory datasets with each timestep annotated with per-agent reward information, as sampled from our LLM critics.
- Abstract(参考訳): 最近の研究は、自動運転車の協調から宇宙での組み立てまで、ロボットが共通の目標を達成するために協調行動を学ぶことの重要性を示している。
この協調行動を学ぶための一般的なアプローチは、集中学習型分散実行パラダイムを活用することである。
しかし、このアプローチは、チーム全体の成功や失敗に対する各エージェントのアクションの貢献をどのように評価するかという、新しい課題も導入します。
このクレジット割り当て問題は未解決のままであり、マルチエージェント強化学習文学で広く研究されている。
実際、人間が手動でエージェントの動作を検査すると、既存の方法よりも優れた信用評価が生成されることが多い。
我々はこの観察と最近の研究を組み合わせることで、大規模言語モデルが多くのパターン認識タスクにおいて人間レベルの性能を示すことを示す。
我々のキーとなる考え方は、新しいLCM-MCA法を動機づけた、シーケンス改善と帰属という2つのパターン認識問題に対する信用割当を再構築することである。
提案手法では,シナリオにおける各エージェントの個別化貢献に基づいて,環境報酬を数値的に分解する集中型LCM報酬批判を用いる。
このフィードバックに基づいてエージェントのポリシーネットワークを更新する。
また、シナリオ内の各エージェントポリシーに仲介目標を直接渡すことで、LLM批評家が明示的なタスク割り当てを行う拡張LLM-TACAを提案する。
どちらの手法も、Level-Based ForagingやRobotic Warehouse、衝突に関連する安全性の制約を取り入れたSpaceworldベンチマークなど、さまざまなベンチマークにおいて、最先端の手法よりもはるかに優れています。
提案手法の成果として,LLM批判者のサンプルとして,各タイムステップにアノテートした大きな軌跡データセットを生成する。
関連論文リスト
- Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
大規模言語モデル(LLM)は、様々なタスクにまたがる顕著な機能を示している。
しかし、彼らは多段階の意思決定と環境フィードバックを必要とする問題に苦戦している。
人間のアノテーションを使わずに環境から報酬モデルを自動的に学習できるフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-17T18:49:25Z) - MALT: Improving Reasoning with Multi-Agent LLM Training [64.13803241218886]
推論問題に対するマルチエージェントLLMトレーニング(MALT)に向けた第一歩を提示する。
提案手法では,ヘテロジニアスLSMが割り当てられた逐次的マルチエージェント構成を用いる。
我々は,MATH,GSM8k,CQAにまたがるアプローチを評価し,MALT on Llama 3.1 8Bモデルでそれぞれ14.14%,7.12%,9.40%の相対的な改善を実現した。
論文 参考訳(メタデータ) (2024-12-02T19:30:36Z) - From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
本稿では,エージェントの強化学習プロセスの最適化にステップワイド報酬を利用するStepAgentを紹介する。
エージェント反射とポリシー調整を容易にする暗黙の逆・逆の強化学習手法を提案する。
論文 参考訳(メタデータ) (2024-11-06T10:35:11Z) - Deep Multi-Agent Reinforcement Learning for Decentralized Active
Hypothesis Testing [11.639503711252663]
我々は,深層多エージェント強化学習の枠組みに根ざした新しいアルゴリズムを導入することで,マルチエージェント能動仮説テスト(AHT)問題に取り組む。
エージェントが協調戦略を学習し、性能を向上させる能力を効果的に示す実験結果を包括的に提示する。
論文 参考訳(メタデータ) (2023-09-14T01:18:04Z) - Learning From Good Trajectories in Offline Multi-Agent Reinforcement
Learning [98.07495732562654]
オフラインマルチエージェント強化学習(MARL)は、事前コンパイルされたデータセットから効果的なマルチエージェントポリシーを学ぶことを目的としている。
オフラインのMARLが学んだエージェントは、しばしばこのランダムなポリシーを継承し、チーム全体のパフォーマンスを脅かす。
この問題に対処するために,共有個人軌道(SIT)と呼ばれる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-28T18:11:26Z) - RACA: Relation-Aware Credit Assignment for Ad-Hoc Cooperation in
Multi-Agent Deep Reinforcement Learning [55.55009081609396]
本稿では、アドホックな協調シナリオにおいてゼロショットの一般化を実現するRACA(Relation-Aware Credit Assignment)と呼ばれる新しい手法を提案する。
RACAは、エージェント間のトポロジ構造を符号化するために、グラフベースのエンコーダ関係を利用する。
提案手法は,StarCraftIIマイクロマネジメントベンチマークとアドホック協調シナリオのベースライン手法よりも優れている。
論文 参考訳(メタデータ) (2022-06-02T03:39:27Z) - Locality Matters: A Scalable Value Decomposition Approach for
Cooperative Multi-Agent Reinforcement Learning [52.7873574425376]
協調型マルチエージェント強化学習(MARL)は,エージェント数で指数関数的に大きい状態空間と動作空間により,スケーラビリティの問題に直面する。
本稿では,学習分散実行パラダイムに局所報酬を組み込んだ,新しい価値に基づくマルチエージェントアルゴリズム LOMAQ を提案する。
論文 参考訳(メタデータ) (2021-09-22T10:08:15Z) - Shapley Counterfactual Credits for Multi-Agent Reinforcement Learning [34.856522993714535]
本稿では,エージェントの連立性を考慮した明示的な信用割当手法であるシェープリー・カウンセリング・クレジット・アサインメントを提案する。
提案手法は,既存の協調型MARLアルゴリズムを著しく上回り,特に難易度の高いタスクにおいて,最先端のアルゴリズムを実現する。
論文 参考訳(メタデータ) (2021-06-01T07:38:34Z) - AoI-Aware Resource Allocation for Platoon-Based C-V2X Networks via
Multi-Agent Multi-Task Reinforcement Learning [22.890835786710316]
本稿は,小隊の無線リソース管理を意識した情報年齢(AoI)の問題について検討する。
複数の自律型プラトンは、C-V2X通信技術を利用して、協力的認識メッセージ(CAM)をフォロワーに広める。
我々は,マルチエージェント強化学習(marl)に基づく分散リソース割当フレームワークを活用し,各小隊リーダ(pl)がエージェントとして行動し,環境と相互作用して最適方針を学ぶ。
論文 参考訳(メタデータ) (2021-05-10T08:39:56Z) - Modeling the Interaction between Agents in Cooperative Multi-Agent
Reinforcement Learning [2.9360071145551068]
対話型アクター・クリティック(IAC)と呼ばれる新しい協調型MARLアルゴリズムを提案する。
IACは政策と価値関数の観点からエージェントの相互作用をモデル化する。
連続制御タスクに値分解手法を拡張し、古典的な制御やマルチエージェント粒子環境を含むベンチマークタスク上でIACを評価する。
論文 参考訳(メタデータ) (2021-02-10T01:58:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。