Reasoning Does Not Necessarily Improve Role-Playing Ability
- URL: http://arxiv.org/abs/2502.16940v1
- Date: Mon, 24 Feb 2025 08:08:41 GMT
- Title: Reasoning Does Not Necessarily Improve Role-Playing Ability
- Authors: Xiachong Feng, Longxu Dou, Lingpeng Kong,
- Abstract summary: The application of role-playing large language models (LLMs) is rapidly expanding in both academic and commercial domains.<n>We compare the effectiveness of direct zero-shot role-playing, role-playing with Chain-of-Thought (CoT), and role-playing using reasoning-optimized LLMs.<n>Our findings reveal that CoT may reduce role-playing performance, reasoning-optimized LLMs are unsuitable for role-playing, and Chinese role-playing performance surpasses English role-playing performance.
- Score: 46.441264660062195
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The application of role-playing large language models (LLMs) is rapidly expanding in both academic and commercial domains, driving an increasing demand for high-precision role-playing models. Simultaneously, the rapid advancement of reasoning techniques has continuously pushed the performance boundaries of LLMs. This intersection of practical role-playing demands and evolving reasoning capabilities raises an important research question: "Can reasoning techniques enhance the role-playing capabilities of LLMs?" To address this, we conduct a comprehensive study using 6 role-playing benchmarks, 24 LLMs, and 3 distinct role-playing strategies, comparing the effectiveness of direct zero-shot role-playing, role-playing with Chain-of-Thought (CoT), and role-playing using reasoning-optimized LLMs. Our findings reveal that CoT may reduce role-playing performance, reasoning-optimized LLMs are unsuitable for role-playing, reasoning ability disrupts the role-playing scaling law, large models still lack proficiency in advanced role-playing, and Chinese role-playing performance surpasses English role-playing performance. Furthermore, based on extensive experimental results, we propose two promising future research directions: Role-aware CoT for improving role-playing LLMs and Reinforcement Learning for role-playing LLMs, aiming to enhance the adaptability, consistency, and effectiveness of role-playing LLMs for both research and real-world applications.
Related papers
- RoleMRC: A Fine-Grained Composite Benchmark for Role-Playing and Instruction-Following [31.80357046048002]
Role-playing is important for Large Language Models to follow diverse instructions.
Existing role-playing datasets mostly contribute to controlling role style and knowledge boundaries.
We introduce a fine-grained role-playing and instruction-following benchmark, named RoleMRC.
arXiv Detail & Related papers (2025-02-17T03:08:37Z) - Satori: Reinforcement Learning with Chain-of-Action-Thought Enhances LLM Reasoning via Autoregressive Search [57.28671084993782]
Large language models (LLMs) have demonstrated remarkable reasoning capabilities across diverse domains.<n>Recent studies have shown that increasing test-time computation enhances LLMs' reasoning capabilities.<n>We propose a two-stage training paradigm: 1) a small-scale format tuning stage to internalize the COAT reasoning format and 2) a large-scale self-improvement stage leveraging reinforcement learning.
arXiv Detail & Related papers (2025-02-04T17:26:58Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - On the Decision-Making Abilities in Role-Playing using Large Language
Models [6.550638804145713]
Large language models (LLMs) are increasingly utilized for role-playing tasks.
This paper focuses on evaluating the decision-making abilities of LLMs post role-playing.
arXiv Detail & Related papers (2024-02-29T02:22:23Z) - Enhancing Role-playing Systems through Aggressive Queries: Evaluation and Improvement [17.5855800570993]
Large Language Models (LLMs) have propelled dialogue generation into new realms, particularly in the field of role-playing systems (RPSs)
Existing LLM-based RPSs still struggle to align with roles when handling intricate and trapped queries in boundary scenarios.
We design the Modular ORchestrated Trap-setting Interaction SystEm (MORTISE) to benchmark and improve the role-playing LLMs' performance.
arXiv Detail & Related papers (2024-02-16T12:12:05Z) - Large Language Models are Superpositions of All Characters: Attaining
Arbitrary Role-play via Self-Alignment [62.898963074989766]
We introduce Ditto, a self-alignment method for role-play.
This method creates a role-play training set comprising 4,000 characters, surpassing the scale of currently available datasets by tenfold.
We present the first comprehensive cross-supervision alignment experiment in the role-play domain.
arXiv Detail & Related papers (2024-01-23T03:56:22Z) - RoleLLM: Benchmarking, Eliciting, and Enhancing Role-Playing Abilities of Large Language Models [107.00832724504752]
We introduce RoleLLM, a framework to benchmark, elicit, and enhance role-playing abilities in Large Language Models (LLMs)
By Context-Instruct and RoleGPT, we create RoleBench, the first systematic and fine-grained character-level benchmark dataset for role-playing with 168,093 samples.
arXiv Detail & Related papers (2023-10-01T17:52:59Z) - RODE: Learning Roles to Decompose Multi-Agent Tasks [69.56458960841165]
Role-based learning holds the promise of achieving scalable multi-agent learning by decomposing complex tasks using roles.
We propose to first decompose joint action spaces into restricted role action spaces by clustering actions according to their effects on the environment and other agents.
By virtue of these advances, our method outperforms the current state-of-the-art MARL algorithms on 10 of the 14 scenarios that comprise the challenging StarCraft II micromanagement benchmark.
arXiv Detail & Related papers (2020-10-04T09:20:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.