SparseTransX: Efficient Training of Translation-Based Knowledge Graph Embeddings Using Sparse Matrix Operations
- URL: http://arxiv.org/abs/2502.16949v3
- Date: Wed, 30 Apr 2025 16:35:50 GMT
- Title: SparseTransX: Efficient Training of Translation-Based Knowledge Graph Embeddings Using Sparse Matrix Operations
- Authors: Md Saidul Hoque Anik, Ariful Azad,
- Abstract summary: Knowledge graph (KG) learning offers a powerful framework for generating new knowledge and making inferences.<n>Training KG embedding can take a significantly long time, especially for larger datasets.<n>We address this issue by replacing the core embedding with SpMM kernels.<n>This allows us to unify multiple scatter (and gather) operations as a single operation, reducing training time and memory usage.
- Score: 1.5998912722142724
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Knowledge graph (KG) learning offers a powerful framework for generating new knowledge and making inferences. Training KG embedding can take a significantly long time, especially for larger datasets. Our analysis shows that the gradient computation of embedding is one of the dominant functions in the translation-based KG embedding training loop. We address this issue by replacing the core embedding computation with SpMM (Sparse-Dense Matrix Multiplication) kernels. This allows us to unify multiple scatter (and gather) operations as a single operation, reducing training time and memory usage. We create a general framework for training KG models using sparse kernels and implement four models, namely TransE, TransR, TransH, and TorusE. Our sparse implementations exhibit up to 5.3x speedup on the CPU and up to 4.2x speedup on the GPU with a significantly low GPU memory footprint. The speedups are consistent across large and small datasets for a given model. Our proposed sparse approach can be extended to accelerate other translation-based (such as TransC, TransM, etc.) and non-translational (such as DistMult, ComplEx, RotatE, etc.) models as well. An implementation of the SpTransX framework is publicly available as a Python package in https://github.com/HipGraph/SpTransX.
Related papers
- An Efficient Sparse Kernel Generator for O(3)-Equivariant Deep Networks [0.5737287537823071]
Rotation equivariant graph neural networks yield state-of-the-art performance on spatial deep learning tasks.<n>Key to these models is the Clebsch-Gordon (CG) tensor product, a kernel that contracts two dense feature vectors with a highly structured sparse tensor to produce a dense output vector.<n>We introduce a GPU sparse kernel generator for the CG tensor product that provides significant speedup over the best existing open and closed-source implementations.
arXiv Detail & Related papers (2025-01-23T08:20:47Z) - Token-wise Influential Training Data Retrieval for Large Language Models [8.42342318438945]
RapidIn is a framework adapting to Large Language Models for estimating the influence of each training data.
RapidIn efficiently traverses the cached gradients to estimate the influence within minutes, achieving over a 6,326x speedup.
arXiv Detail & Related papers (2024-05-20T01:57:34Z) - QUIK: Towards End-to-End 4-Bit Inference on Generative Large Language
Models [57.04178959678024]
We show that the majority of inference computations for large generative models can be performed with both weights and activations being cast to 4 bits.
We achieve this via a hybrid quantization strategy called QUIK, which compresses most of the weights and activations to 4-bit.
We provide GPU kernels matching the QUIK format with highly-efficient layer-wise runtimes, which lead to practical end-to-end throughput improvements of up to 3.4x.
arXiv Detail & Related papers (2023-10-13T17:15:05Z) - Dataset Quantization [72.61936019738076]
We present dataset quantization (DQ), a new framework to compress large-scale datasets into small subsets.
DQ is the first method that can successfully distill large-scale datasets such as ImageNet-1k with a state-of-the-art compression ratio.
arXiv Detail & Related papers (2023-08-21T07:24:29Z) - Communication-Free Distributed GNN Training with Vertex Cut [63.22674903170953]
CoFree-GNN is a novel distributed GNN training framework that significantly speeds up the training process by implementing communication-free training.
We demonstrate that CoFree-GNN speeds up the GNN training process by up to 10 times over the existing state-of-the-art GNN training approaches.
arXiv Detail & Related papers (2023-08-06T21:04:58Z) - Winner-Take-All Column Row Sampling for Memory Efficient Adaptation of Language Model [89.8764435351222]
We propose a new family of unbiased estimators called WTA-CRS, for matrix production with reduced variance.
Our work provides both theoretical and experimental evidence that, in the context of tuning transformers, our proposed estimators exhibit lower variance compared to existing ones.
arXiv Detail & Related papers (2023-05-24T15:52:08Z) - Layered gradient accumulation and modular pipeline parallelism: fast and
efficient training of large language models [0.0]
We analyse the shortest possible training time for different configurations of distributed training.
We introduce two new methods, textitlayered gradient accumulation and textitmodular pipeline parallelism, which together cut the shortest training time by half.
arXiv Detail & Related papers (2021-06-04T19:21:49Z) - Providing Meaningful Data Summarizations Using Examplar-based Clustering
in Industry 4.0 [67.80123919697971]
We show, that our GPU implementation provides speedups of up to 72x using single-precision and up to 452x using half-precision compared to conventional CPU algorithms.
We apply our algorithm to real-world data from injection molding manufacturing processes and discuss how found summaries help with steering this specific process to cut costs and reduce the manufacturing of bad parts.
arXiv Detail & Related papers (2021-05-25T15:55:14Z) - Accurate, Efficient and Scalable Training of Graph Neural Networks [9.569918335816963]
Graph Neural Networks (GNNs) are powerful deep learning models to generate node embeddings on graphs.
It is still challenging to perform training in an efficient and scalable way.
We propose a novel parallel training framework that reduces training workload by orders of magnitude compared with state-of-the-art minibatch methods.
arXiv Detail & Related papers (2020-10-05T22:06:23Z) - Automatic Cross-Replica Sharding of Weight Update in Data-Parallel
Training [12.36664837965624]
This paper presents an approach to automatically shard the weight update across replicas.
We show this technique achieves substantial speedups on typical image and language models on Cloud TPUs.
arXiv Detail & Related papers (2020-04-28T07:13:50Z) - Neural Network Compression Framework for fast model inference [59.65531492759006]
We present a new framework for neural networks compression with fine-tuning, which we called Neural Network Compression Framework (NNCF)
It leverages recent advances of various network compression methods and implements some of them, such as sparsity, quantization, and binarization.
The framework can be used within the training samples, which are supplied with it, or as a standalone package that can be seamlessly integrated into the existing training code.
arXiv Detail & Related papers (2020-02-20T11:24:01Z) - On Coresets for Support Vector Machines [61.928187390362176]
A coreset is a small, representative subset of the original data points.
We show that our algorithm can be used to extend the applicability of any off-the-shelf SVM solver to streaming, distributed, and dynamic data settings.
arXiv Detail & Related papers (2020-02-15T23:25:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.