論文の概要: All You Need for Counterfactual Explainability Is Principled and Reliable Estimate of Aleatoric and Epistemic Uncertainty
- arxiv url: http://arxiv.org/abs/2502.17007v1
- Date: Mon, 24 Feb 2025 09:38:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:59:32.175108
- Title: All You Need for Counterfactual Explainability Is Principled and Reliable Estimate of Aleatoric and Epistemic Uncertainty
- Title(参考訳): 現実的説明可能性に必要なのは、アレタリックと疫学の不確かさの原理と信頼性
- Authors: Kacper Sokol, Eyke Hüllermeier,
- Abstract要約: 我々は透明性研究が人工知能の基本的な概念の多くを見落としていると主張している。
本質的に透明なモデルは、人間中心の説明的洞察の恩恵を受けることができる。
高度なレベルでは、人工知能の基礎を透明性研究に統合することは、より信頼性が高く、堅牢で、理解可能な予測モデルを生み出すことを約束する。
- 参考スコア(独自算出の注目度): 27.344785490275864
- License:
- Abstract: This position paper argues that, to its detriment, transparency research overlooks many foundational concepts of artificial intelligence. Here, we focus on uncertainty quantification -- in the context of ante-hoc interpretability and counterfactual explainability -- showing how its adoption could address key challenges in the field. First, we posit that uncertainty and ante-hoc interpretability offer complementary views of the same underlying idea; second, we assert that uncertainty provides a principled unifying framework for counterfactual explainability. Consequently, inherently transparent models can benefit from human-centred explanatory insights -- like counterfactuals -- which are otherwise missing. At a higher level, integrating artificial intelligence fundamentals into transparency research promises to yield more reliable, robust and understandable predictive models.
- Abstract(参考訳): このポジションペーパーでは、透明性研究は人工知能の基本的な概念の多くを見落としていると論じている。
ここでは、不確実性の定量化、すなわち、アンテ・ホックの解釈可能性と反ファクト的説明可能性という文脈において、その適用がこの分野における重要な課題にどのように対処するかを示す。
第一に、不確実性とアンテホック解釈性は、同じ考え方の相補的な見解を与え、第二に、不確実性は、反事実的説明可能性のための原則化された統一的な枠組みを提供する、と断言する。
その結果、本質的に透明なモデルは、人間中心の説明的洞察(反事実など)の恩恵を受けることができる。
高度なレベルでは、人工知能の基礎を透明性研究に統合することは、より信頼性が高く、堅牢で、理解可能な予測モデルを生み出すことを約束する。
関連論文リスト
- On the Fairness, Diversity and Reliability of Text-to-Image Generative Models [49.60774626839712]
マルチモーダル生成モデルは 彼らの公正さ、信頼性、そして誤用の可能性について 批判的な議論を呼んだ
組込み空間における摂動に対する応答を通じてモデルの信頼性を評価するための評価フレームワークを提案する。
本手法は, 信頼できない, バイアス注入されたモデルを検出し, バイアス前駆体の検索を行うための基礎となる。
論文 参考訳(メタデータ) (2024-11-21T09:46:55Z) - Know Where You're Uncertain When Planning with Multimodal Foundation Models: A Formal Framework [54.40508478482667]
認識と計画生成の不確実性を解消し、定量化し、緩和する包括的枠組みを提案する。
本稿では,知覚と意思決定の独特な性質に合わせた手法を提案する。
この不確実性分散フレームワークは, 変動率を最大40%削減し, タスク成功率をベースラインに比べて5%向上させることを示した。
論文 参考訳(メタデータ) (2024-11-03T17:32:00Z) - Can you trust your explanations? A robustness test for feature attribution methods [42.36530107262305]
説明可能なAI(XAI)の分野は急速に成長しているが、その技術の使用は時々予期せぬ結果をもたらした。
多様体仮説とアンサンブルアプローチの活用が、ロバスト性の詳細な解析にどのように役立つかを示す。
論文 参考訳(メタデータ) (2024-06-20T14:17:57Z) - Does Faithfulness Conflict with Plausibility? An Empirical Study in Explainable AI across NLP Tasks [9.979726030996051]
私たちは、Shapleyの価値とLIMEがより忠実で妥当性が高いことを示す。
この結果から,一方の次元を一方の次元に最適化するのではなく,2つの目的を持つ説明可能性アルゴリズムを最適化する可能性が示唆された。
論文 参考訳(メタデータ) (2024-03-29T20:28:42Z) - Explainable AI for clinical risk prediction: a survey of concepts,
methods, and modalities [2.9404725327650767]
臨床リスク予測のための説明可能なモデルの開発状況
外部検証の必要性と多様な解釈可能性メソッドの組み合わせを強調している。
臨床リスク予測における説明可能性へのエンドツーエンドアプローチは成功に不可欠である。
論文 参考訳(メタデータ) (2023-08-16T14:51:51Z) - (Un)reasonable Allure of Ante-hoc Interpretability for High-stakes
Domains: Transparency Is Necessary but Insufficient for Comprehensibility [25.542848590851758]
アンテホック解釈能力は、医療などの高度な領域において、説明可能な人工知能の聖杯となっている。
構造がドメイン固有の制約に従属する予測モデルや、本質的に透明なモデルを指すこともある。
私たちはこの概念を解き放ち、高い領域にまたがる安全な採用に必要なものをよりよく理解します。
論文 参考訳(メタデータ) (2023-06-04T09:34:41Z) - Logical Satisfiability of Counterfactuals for Faithful Explanations in
NLI [60.142926537264714]
本稿では, 忠実度スルー・カウンタファクトの方法論について紹介する。
これは、説明に表される論理述語に基づいて、反実仮説を生成する。
そして、そのモデルが表現された論理と反ファクトの予測が一致しているかどうかを評価する。
論文 参考訳(メタデータ) (2022-05-25T03:40:59Z) - Exploring the Trade-off between Plausibility, Change Intensity and
Adversarial Power in Counterfactual Explanations using Multi-objective
Optimization [73.89239820192894]
自動対物生成は、生成した対物インスタンスのいくつかの側面を考慮すべきである。
本稿では, 対実例生成のための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2022-05-20T15:02:53Z) - The Unreasonable Effectiveness of Deep Evidential Regression [72.30888739450343]
不確実性を考慮した回帰ベースニューラルネットワーク(NN)による新しいアプローチは、従来の決定論的手法や典型的なベイズ的NNよりも有望であることを示している。
我々は、理論的欠点を詳述し、合成および実世界のデータセットのパフォーマンスを分析し、Deep Evidential Regressionが正確な不確実性ではなく定量化であることを示す。
論文 参考訳(メタデータ) (2022-05-20T10:10:32Z) - Uncertainty as a Form of Transparency: Measuring, Communicating, and
Using Uncertainty [66.17147341354577]
我々は,モデル予測に関連する不確実性を推定し,伝達することにより,相補的な透明性の形式を考えることについて議論する。
モデルの不公平性を緩和し、意思決定を強化し、信頼できるシステムを構築するために不確実性がどのように使われるかを説明する。
この研究は、機械学習、可視化/HCI、デザイン、意思決定、公平性にまたがる文学から引き出された学際的レビューを構成する。
論文 参考訳(メタデータ) (2020-11-15T17:26:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。