論文の概要: Moving Past Single Metrics: Exploring Short-Text Clustering Across Multiple Resolutions
- arxiv url: http://arxiv.org/abs/2502.17020v1
- Date: Mon, 24 Feb 2025 10:17:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:59:31.678563
- Title: Moving Past Single Metrics: Exploring Short-Text Clustering Across Multiple Resolutions
- Title(参考訳): 単一メトリックの移動: 複数解像度にわたる短文クラスタリングの探索
- Authors: Justin Miller, Tristram Alexander,
- Abstract要約: この研究は、3万の政治Twitterの伝記を含む、短いテキストのクラスタリングに焦点を当てている。
クラスタ解像度間の特定のクラスタの安定性を明らかにするために、比例安定性の指標が導入された。
結果は、データセットの性質を理解するための質問ツールを提供するために、Sankeyダイアグラムを使用して視覚化される。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Cluster number is typically a parameter selected at the outset in clustering problems, and while impactful, the choice can often be difficult to justify. Inspired by bioinformatics, this study examines how the nature of clusters varies with cluster number, presenting a method for determining cluster robustness, and providing a systematic method for deciding on the cluster number. The study focuses specifically on short-text clustering, involving 30,000 political Twitter bios, where the sparse co-occurrence of words between texts makes finding meaningful clusters challenging. A metric of proportional stability is introduced to uncover the stability of specific clusters between cluster resolutions, and the results are visualised using Sankey diagrams to provide an interrogative tool for understanding the nature of the dataset. The visualisation provides an intuitive way to track cluster subdivision and reorganisation as cluster number increases, offering insights that static, single-resolution metrics cannot capture. The results show that instead of seeking a single 'optimal' solution, choosing a cluster number involves balancing informativeness and complexity.
- Abstract(参考訳): クラスタ番号は通常、クラスタリング問題の開始時に選択されるパラメータであり、影響はあるものの、選択を正当化することが難しい場合が多い。
バイオインフォマティクスにインスパイアされた本研究では,クラスタの性質がクラスタ数とどのように異なるかを調べ,クラスタのロバスト性を決定する方法を示し,クラスタ数を決定するための体系的な方法を提供する。
この研究は、テキスト間の単語のまばらな共起が意味のあるクラスタの発見を難しくする、3万の政治Twitterバイオを含む、短文のクラスタリングに特化している。
クラスタ解像度間の特定のクラスタの安定性を明らかにするために比例安定性の指標を導入し、その結果をサンキー図を用いて視覚化し、データセットの性質を理解するための質問ツールを提供する。
この視覚化は、クラスタ数が増加するにつれてクラスタの分割と再編成を追跡する直感的な方法を提供する。
その結果、単一の'最適'なソリューションを探す代わりに、クラスタ数を選択するには、情報量と複雑さのバランスが伴うことがわかった。
関連論文リスト
- Guaranteed Recovery of Unambiguous Clusters [7.011239860967789]
クラスタリングは、しばしば難しい問題である。なぜなら、それは、"正しい"クラスタリングがどうあるべきかに固有の曖昧さのためである。
本稿では,不明瞭な場合のクラスタリングを復元するアルゴリズムについて,情報理論による特徴付けと設計を提案する。
論文 参考訳(メタデータ) (2025-01-22T18:51:25Z) - Personalized Clustering via Targeted Representation Learning [12.685373069492448]
クラスタリングは伝統的に、ラベルのないデータ内の自然なグループ構造を明らかにすることを目的としています。
ターゲット表現学習を明示的に行うパーソナライズされたクラスタリング手法を提案する。
論文 参考訳(メタデータ) (2024-12-18T10:28:51Z) - Dying Clusters Is All You Need -- Deep Clustering With an Unknown Number of Clusters [5.507296054825372]
高次元データで有意義なグループを見つけることは、データマイニングにおいて重要な課題である。
深層クラスタリング手法はこれらの課題において顕著な成果を上げている。
これらのメソッドの多くは、事前にクラスタの数を指定する必要がある。
これは、ラベル付きデータが利用できない場合、クラスタの数は通常不明であるため、大きな制限となる。
これらのアプローチのほとんどは、クラスタリングプロセスから分離されたクラスタの数を見積もっています。
論文 参考訳(メタデータ) (2024-10-12T11:04:10Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
本稿では,Reinforcement Graph Clusteringと呼ばれる新しいディープグラフクラスタリング手法を提案する。
提案手法では,クラスタ数決定と教師なし表現学習を統一的なフレームワークに統合する。
フィードバック動作を行うために、クラスタリング指向の報酬関数を提案し、同一クラスタの凝集を高め、異なるクラスタを分離する。
論文 参考訳(メタデータ) (2023-08-13T18:12:28Z) - Using Decision Trees for Interpretable Supervised Clustering [0.0]
教師付きクラスタリングは、高い確率密度でラベル付きデータのクラスタを形成することを目的としている。
特に、特定のクラスのデータのクラスタを見つけ、包括的なルールのセットでクラスタを記述することに興味があります。
論文 参考訳(メタデータ) (2023-07-16T17:12:45Z) - Hard Regularization to Prevent Deep Online Clustering Collapse without
Data Augmentation [65.268245109828]
オンラインディープクラスタリング(オンラインディープクラスタリング)とは、機能抽出ネットワークとクラスタリングモデルを組み合わせて、クラスタラベルを処理された各新しいデータポイントまたはバッチに割り当てることである。
オフラインメソッドよりも高速で汎用性が高いが、オンラインクラスタリングは、エンコーダがすべての入力を同じポイントにマッピングし、すべてを単一のクラスタに配置する、崩壊したソリューションに容易に到達することができる。
本稿では,データ拡張を必要としない手法を提案する。
論文 参考訳(メタデータ) (2023-03-29T08:23:26Z) - Oracle-guided Contrastive Clustering [28.066047266687058]
Oracle-Guided Contrastive Clustering(OCC)は,ユニークな要求を持ったオーラクルに対して,ペアワイズで同クラスタ"クエリを対話的に作成することで,クラスタリングを実現する。
私たちの知る限りでは、パーソナライズされたクラスタリングを実行する最初のディープフレームワークです。
論文 参考訳(メタデータ) (2022-11-01T12:05:12Z) - Differentially-Private Clustering of Easy Instances [67.04951703461657]
異なるプライベートクラスタリングでは、個々のデータポイントに関する情報を公開せずに、$k$のクラスタセンターを特定することが目標だ。
我々は、データが"簡単"である場合にユーティリティを提供する実装可能な差分プライベートクラスタリングアルゴリズムを提供する。
我々は、非プライベートクラスタリングアルゴリズムを簡単なインスタンスに適用し、結果をプライベートに組み合わせることのできるフレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-29T08:13:56Z) - Self-supervised Contrastive Attributed Graph Clustering [110.52694943592974]
我々は,自己教師型コントラストグラフクラスタリング(SCAGC)という,新たな属性グラフクラスタリングネットワークを提案する。
SCAGCでは,不正確なクラスタリングラベルを活用することで,ノード表現学習のための自己教師付きコントラスト損失を設計する。
OOSノードでは、SCAGCはクラスタリングラベルを直接計算できる。
論文 参考訳(メタデータ) (2021-10-15T03:25:28Z) - You Never Cluster Alone [150.94921340034688]
我々は、主流のコントラスト学習パラダイムをクラスタレベルのスキームに拡張し、同じクラスタに属するすべてのデータが統一された表現に寄与する。
分類変数の集合をクラスタ化代入信頼度として定義し、インスタンスレベルの学習トラックとクラスタレベルの学習トラックを関連付ける。
代入変数を再パラメータ化することで、TCCはエンドツーエンドでトレーニングされる。
論文 参考訳(メタデータ) (2021-06-03T14:59:59Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。