論文の概要: M3DA: Benchmark for Unsupervised Domain Adaptation in 3D Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2502.17029v1
- Date: Mon, 24 Feb 2025 10:29:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:52:34.872475
- Title: M3DA: Benchmark for Unsupervised Domain Adaptation in 3D Medical Image Segmentation
- Title(参考訳): M3DA:3次元医用画像セグメンテーションにおける教師なし領域適応のベンチマーク
- Authors: Boris Shirokikh, Anvar Kurmukov, Mariia Donskova, Valentin Samokhin, Mikhail Belyaev, Ivan Oseledets,
- Abstract要約: ドメインシフトは、MRIやCTなどのソースからの3D医療画像のセグメンテーションにディープラーニングを適用する上で、大きな課題となる。
提案するベンチマークでは,10以上の既存ドメイン適応手法を評価した。
結果から、ドメイン間のパフォーマンスギャップを一貫して埋めることはできません。
- 参考スコア(独自算出の注目度): 4.327603420628437
- License:
- Abstract: Domain shift presents a significant challenge in applying Deep Learning to the segmentation of 3D medical images from sources like Magnetic Resonance Imaging (MRI) and Computed Tomography (CT). Although numerous Domain Adaptation methods have been developed to address this issue, they are often evaluated under impractical data shift scenarios. Specifically, the medical imaging datasets used are often either private, too small for robust training and evaluation, or limited to single or synthetic tasks. To overcome these limitations, we introduce a M3DA /"mEd@/ benchmark comprising four publicly available, multiclass segmentation datasets. We have designed eight domain pairs featuring diverse and practically relevant distribution shifts. These include inter-modality shifts between MRI and CT and intra-modality shifts among various MRI acquisition parameters, different CT radiation doses, and presence/absence of contrast enhancement in images. Within the proposed benchmark, we evaluate more than ten existing domain adaptation methods. Our results show that none of them can consistently close the performance gap between the domains. For instance, the most effective method reduces the performance gap by about 62% across the tasks. This highlights the need for developing novel domain adaptation algorithms to enhance the robustness and scalability of deep learning models in medical imaging. We made our M3DA benchmark publicly available: https://github.com/BorisShirokikh/M3DA.
- Abstract(参考訳): 領域シフトは、MRI(MRI)やCT(CT)などの音源からの3次元医用画像のセグメンテーションにディープラーニングを適用する上で大きな課題となる。
この問題に対処するために多くのドメイン適応手法が開発されているが、実践的なデータシフトシナリオの下で評価されることも多い。
具体的には、使用される医用画像データセットはプライベートで、堅牢なトレーニングと評価には小さすぎるか、単独または合成タスクに限定されていることが多い。
これらの制限を克服するため、M3DA /"mEd@/ベンチマークを導入し、4つのパブリックなマルチクラスセグメンテーションデータセットを作成します。
我々は,多様かつ実用的な分布シフトを特徴とする8つのドメインペアを設計した。
これらの中には、MRIとCT間のモダリティシフトや、さまざまなMRI取得パラメータ間のモダリティシフト、異なるCT線量、画像におけるコントラスト増強の存在/存在などがある。
提案するベンチマークでは,10以上の既存ドメイン適応手法を評価した。
結果から、ドメイン間のパフォーマンスギャップを一貫して埋めることはできません。
例えば、最も効果的な方法は、タスク間でのパフォーマンスギャップを約62%削減する。
これは、医療画像におけるディープラーニングモデルの堅牢性とスケーラビリティを高めるために、新しいドメイン適応アルゴリズムを開発する必要性を強調している。
M3DAベンチマークを公開しました: https://github.com/BorisShirokikh/M3DA。
関連論文リスト
- A Novel Convolutional-Free Method for 3D Medical Imaging Segmentation [0.0]
畳み込みニューラルネットワーク(CNN)がこの分野を支配し、3次元の医用画像セグメンテーションで大きな成功を収めている。
TransUNetやnnFormerのような最近のトランスフォーマーベースのモデルは、これらの制限に対処することを約束している。
本稿では,トランスアーキテクチャと自己認識機構に基づく,新しい完全畳み込みフリーモデルを提案する。
論文 参考訳(メタデータ) (2025-02-08T00:52:45Z) - Discriminative Hamiltonian Variational Autoencoder for Accurate Tumor Segmentation in Data-Scarce Regimes [2.8498944632323755]
医用画像分割のためのエンドツーエンドハイブリッドアーキテクチャを提案する。
ハミルトン変分オートエンコーダ(HVAE)と識別正則化を用いて生成画像の品質を向上する。
我々のアーキテクチャはスライス・バイ・スライス・ベースで3Dボリュームを分割し、リッチな拡張データセットをカプセル化する。
論文 参考訳(メタデータ) (2024-06-17T15:42:08Z) - QUBIQ: Uncertainty Quantification for Biomedical Image Segmentation Challenge [93.61262892578067]
医用画像分割作業の不確実性、特にラター間変動性は重要な課題である。
この可変性は、自動セグメンテーションアルゴリズムの開発と評価に直接影響を及ぼす。
バイオメディカル画像量化チャレンジ(QUBIQ)における不確実性の定量化のベンチマーク結果を報告する。
論文 参考訳(メタデータ) (2024-03-19T17:57:24Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
本稿では,CLIPモデルを用いた医用異常検出のための軽量な多レベル適応と比較フレームワークを提案する。
提案手法では,複数の残像アダプタを事前学習した視覚エンコーダに統合し,視覚的特徴の段階的向上を実現する。
医学的異常検出ベンチマーク実験により,本手法が現在の最先端モデルを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2024-03-19T09:28:19Z) - Promise:Prompt-driven 3D Medical Image Segmentation Using Pretrained
Image Foundation Models [13.08275555017179]
単点プロンプトのみを用いたプロンプト駆動型3次元医用画像分割モデルProMISeを提案する。
今回,大腸癌と膵腫瘍の2つの領域に分布する2つのパブリックデータセットについて検討した。
論文 参考訳(メタデータ) (2023-10-30T16:49:03Z) - 3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation [52.699139151447945]
医用画像の領域分割を行うために, SAMを2次元から3次元に変換する新しい適応法を提案する。
本モデルでは, 腎腫瘍, 膵腫瘍, 大腸癌の3つのタスクのうち8.25%, 29.87%, 10.11%の3つのタスクにおいて, ドメイン・オブ・ザ・アーティヴ・メディカル・イメージ・セグメンテーション・モデルより優れ, 肝腫瘍セグメンテーションでも同様の性能が得られる。
論文 参考訳(メタデータ) (2023-06-23T12:09:52Z) - MSCDA: Multi-level Semantic-guided Contrast Improves Unsupervised Domain
Adaptation for Breast MRI Segmentation in Small Datasets [5.272836235045653]
マルチレベルセマンティック・ガイド・コントラスト・ドメイン・アダプティブ・フレームワークを提案する。
我々のアプローチは、ドメイン間の特徴表現を整合させるために、対照的な学習を伴う自己学習を取り入れている。
特に,ピクセル・ツー・ピクセル,ピクセル・ツー・セントロイド,セントロイド・ツー・セントロイドのコントラストを取り入れることで,コントラストの損失を増大させる。
論文 参考訳(メタデータ) (2023-01-04T19:16:55Z) - Unsupervised Domain Adaptation with Contrastive Learning for OCT
Segmentation [49.59567529191423]
本稿では,新しい未ラベル領域からのボリューム画像のセグメンテーションのための,新しい半教師付き学習フレームワークを提案する。
教師付き学習とコントラスト学習を併用し、3次元の近傍スライス間の類似性を利用したコントラストペア方式を導入する。
論文 参考訳(メタデータ) (2022-03-07T19:02:26Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
本論文では,UDAスキームに基づくBiGL(Bidirectional Global-to-Local)適応フレームワークを提案する。
具体的には、脳腫瘍をセグメント化するために、双方向画像合成およびセグメンテーションモジュールを提案する。
提案手法は, 最先端の非教師なし領域適応法を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2021-05-17T10:11:45Z) - Self-Attentive Spatial Adaptive Normalization for Cross-Modality Domain
Adaptation [9.659642285903418]
放射線科医の費用負担を軽減するための医用画像のクロスモダリティ合成
本稿では,教師なしまたは教師なし(非ペア画像データ)の設定が可能な医用画像における画像から画像への変換手法を提案する。
論文 参考訳(メタデータ) (2021-03-05T16:22:31Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
我々は3次元畳み込みオートエンコーダを用いて、無関係な空間画像表現を実現するとともに、ABIDEデータ上で既存のアプローチより優れていることを示す。
論文 参考訳(メタデータ) (2020-10-14T16:50:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。