Mind the Blind Spots: A Focus-Level Evaluation Framework for LLM Reviews
- URL: http://arxiv.org/abs/2502.17086v3
- Date: Fri, 23 May 2025 01:21:39 GMT
- Title: Mind the Blind Spots: A Focus-Level Evaluation Framework for LLM Reviews
- Authors: Hyungyu Shin, Jingyu Tang, Yoonjoo Lee, Nayoung Kim, Hyunseung Lim, Ji Yong Cho, Hwajung Hong, Moontae Lee, Juho Kim,
- Abstract summary: Large Language Models (LLMs) can automatically draft reviews now.<n> determining whether LLM-generated reviews are trustworthy requires systematic evaluation.<n>We introduce a focus-level evaluation framework that operationalizes the focus as a normalized distribution of attention.
- Score: 46.0003776499898
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Peer review underpins scientific progress, but it is increasingly strained by reviewer shortages and growing workloads. Large Language Models (LLMs) can automatically draft reviews now, but determining whether LLM-generated reviews are trustworthy requires systematic evaluation. Researchers have evaluated LLM reviews at either surface-level (e.g., BLEU and ROUGE) or content-level (e.g., specificity and factual accuracy). Yet it remains uncertain whether LLM-generated reviews attend to the same critical facets that human experts weigh -- the strengths and weaknesses that ultimately drive an accept-or-reject decision. We introduce a focus-level evaluation framework that operationalizes the focus as a normalized distribution of attention across predefined facets in paper reviews. Based on the framework, we developed an automatic focus-level evaluation pipeline based on two sets of facets: target (e.g., problem, method, and experiment) and aspect (e.g., validity, clarity, and novelty), leveraging 676 paper reviews (https://figshare.com/s/d5adf26c802527dd0f62) from OpenReview that consists of 3,657 strengths and weaknesses identified from human experts. The comparison of focus distributions between LLMs and human experts showed that the off-the-shelf LLMs consistently have a more biased focus towards examining technical validity while significantly overlooking novelty assessment when criticizing papers.
Related papers
- Reviewing Scientific Papers for Critical Problems With Reasoning LLMs: Baseline Approaches and Automatic Evaluation [0.552480439325792]
We introduce several baseline approaches and an extendable automatic evaluation framework using top reasoning LLMs as judges.<n> o3 exhibited the best problem identification performance among all models at a modest cost.<n>This paper provides insights into document-based scientific understanding/reasoning and lays a foundation for future applications.
arXiv Detail & Related papers (2025-05-28T06:14:30Z) - ReviewAgents: Bridging the Gap Between Human and AI-Generated Paper Reviews [24.566487721847597]
Academic paper review is a critical yet time-consuming task within the research community.<n>With the increasing volume of academic publications, automating the review process has become a significant challenge.<n>We propose ReviewAgents, a framework that leverages large language models (LLMs) to generate academic paper reviews.
arXiv Detail & Related papers (2025-03-11T14:56:58Z) - LLM-Safety Evaluations Lack Robustness [58.334290876531036]
We argue that current safety alignment research efforts for large language models are hindered by many intertwined sources of noise.
We propose a set of guidelines for reducing noise and bias in evaluations of future attack and defense papers.
arXiv Detail & Related papers (2025-03-04T12:55:07Z) - Towards Understanding the Robustness of LLM-based Evaluations under Perturbations [9.944512689015998]
Large Language Models (LLMs) can serve as automatic evaluators for non-standardized metrics in summarization and dialog-based tasks.
We conduct experiments across multiple prompting strategies to examine how LLMs fare as quality evaluators when compared with human judgments.
arXiv Detail & Related papers (2024-12-12T13:31:58Z) - Are We There Yet? Revealing the Risks of Utilizing Large Language Models in Scholarly Peer Review [66.73247554182376]
Large language models (LLMs) have led to their integration into peer review.<n>The unchecked adoption of LLMs poses significant risks to the integrity of the peer review system.<n>We show that manipulating 5% of the reviews could potentially cause 12% of the papers to lose their position in the top 30% rankings.
arXiv Detail & Related papers (2024-12-02T16:55:03Z) - AI-Driven Review Systems: Evaluating LLMs in Scalable and Bias-Aware Academic Reviews [18.50142644126276]
We evaluate the alignment of automatic paper reviews with human reviews using an arena of human preferences by pairwise comparisons.
We fine-tune an LLM to predict human preferences, predicting which reviews humans will prefer in a head-to-head battle between LLMs.
We make the reviews of publicly available arXiv and open-access Nature journal papers available online, along with a free service which helps authors review and revise their research papers and improve their quality.
arXiv Detail & Related papers (2024-08-19T19:10:38Z) - LLMs Assist NLP Researchers: Critique Paper (Meta-)Reviewing [106.45895712717612]
Large language models (LLMs) have shown remarkable versatility in various generative tasks.
This study focuses on the topic of LLMs assist NLP Researchers.
To our knowledge, this is the first work to provide such a comprehensive analysis.
arXiv Detail & Related papers (2024-06-24T01:30:22Z) - Finding Blind Spots in Evaluator LLMs with Interpretable Checklists [23.381287828102995]
We investigate the effectiveness of Large Language Models (LLMs) as evaluators for text generation tasks.
We propose FBI, a novel framework designed to examine the proficiency of Evaluator LLMs in assessing four critical abilities.
arXiv Detail & Related papers (2024-06-19T10:59:48Z) - DnA-Eval: Enhancing Large Language Model Evaluation through Decomposition and Aggregation [75.81096662788254]
Large Language Models (LLMs) are scalable and economical evaluators.<n>The question of how reliable these evaluators are has emerged as a crucial research question.<n>We propose Decompose and Aggregate, which breaks down the evaluation process into different stages based on pedagogical practices.
arXiv Detail & Related papers (2024-05-24T08:12:30Z) - CriticEval: Evaluating Large Language Model as Critic [110.29766259843453]
CriticEval is a novel benchmark designed to comprehensively and reliably evaluate critique ability of Large Language Models.
To ensure the comprehensiveness, CriticEval evaluates critique ability from four dimensions across nine diverse task scenarios.
To ensure the reliability, a large number of critiques are annotated to serve as references.
arXiv Detail & Related papers (2024-02-21T12:38:59Z) - PRE: A Peer Review Based Large Language Model Evaluator [14.585292530642603]
Existing paradigms rely on either human annotators or model-based evaluators to evaluate the performance of LLMs.
We propose a novel framework that can automatically evaluate LLMs through a peer-review process.
arXiv Detail & Related papers (2024-01-28T12:33:14Z) - Exploring the Reliability of Large Language Models as Customized Evaluators for Diverse NLP Tasks [65.69651759036535]
We analyze whether large language models (LLMs) can serve as reliable alternatives to humans.<n>This paper explores both conventional tasks (e.g., story generation) and alignment tasks (e.g., math reasoning)<n>We find that LLM evaluators can generate unnecessary criteria or omit crucial criteria, resulting in a slight deviation from the experts.
arXiv Detail & Related papers (2023-10-30T17:04:35Z) - A Survey on Evaluation of Large Language Models [87.60417393701331]
Large language models (LLMs) are gaining increasing popularity in both academia and industry.
This paper focuses on three key dimensions: what to evaluate, where to evaluate, and how to evaluate.
arXiv Detail & Related papers (2023-07-06T16:28:35Z) - Sentiment Analysis in the Era of Large Language Models: A Reality Check [69.97942065617664]
This paper investigates the capabilities of large language models (LLMs) in performing various sentiment analysis tasks.
We evaluate performance across 13 tasks on 26 datasets and compare the results against small language models (SLMs) trained on domain-specific datasets.
arXiv Detail & Related papers (2023-05-24T10:45:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.