LLMs Assist NLP Researchers: Critique Paper (Meta-)Reviewing
- URL: http://arxiv.org/abs/2406.16253v3
- Date: Thu, 03 Oct 2024 02:57:49 GMT
- Title: LLMs Assist NLP Researchers: Critique Paper (Meta-)Reviewing
- Authors: Jiangshu Du, Yibo Wang, Wenting Zhao, Zhongfen Deng, Shuaiqi Liu, Renze Lou, Henry Peng Zou, Pranav Narayanan Venkit, Nan Zhang, Mukund Srinath, Haoran Ranran Zhang, Vipul Gupta, Yinghui Li, Tao Li, Fei Wang, Qin Liu, Tianlin Liu, Pengzhi Gao, Congying Xia, Chen Xing, Jiayang Cheng, Zhaowei Wang, Ying Su, Raj Sanjay Shah, Ruohao Guo, Jing Gu, Haoran Li, Kangda Wei, Zihao Wang, Lu Cheng, Surangika Ranathunga, Meng Fang, Jie Fu, Fei Liu, Ruihong Huang, Eduardo Blanco, Yixin Cao, Rui Zhang, Philip S. Yu, Wenpeng Yin,
- Abstract summary: Large language models (LLMs) have shown remarkable versatility in various generative tasks.
This study focuses on the topic of LLMs assist NLP Researchers.
To our knowledge, this is the first work to provide such a comprehensive analysis.
- Score: 106.45895712717612
- License:
- Abstract: This work is motivated by two key trends. On one hand, large language models (LLMs) have shown remarkable versatility in various generative tasks such as writing, drawing, and question answering, significantly reducing the time required for many routine tasks. On the other hand, researchers, whose work is not only time-consuming but also highly expertise-demanding, face increasing challenges as they have to spend more time reading, writing, and reviewing papers. This raises the question: how can LLMs potentially assist researchers in alleviating their heavy workload? This study focuses on the topic of LLMs assist NLP Researchers, particularly examining the effectiveness of LLM in assisting paper (meta-)reviewing and its recognizability. To address this, we constructed the ReviewCritique dataset, which includes two types of information: (i) NLP papers (initial submissions rather than camera-ready) with both human-written and LLM-generated reviews, and (ii) each review comes with "deficiency" labels and corresponding explanations for individual segments, annotated by experts. Using ReviewCritique, this study explores two threads of research questions: (i) "LLMs as Reviewers", how do reviews generated by LLMs compare with those written by humans in terms of quality and distinguishability? (ii) "LLMs as Metareviewers", how effectively can LLMs identify potential issues, such as Deficient or unprofessional review segments, within individual paper reviews? To our knowledge, this is the first work to provide such a comprehensive analysis.
Related papers
- LLMs for Literature Review: Are we there yet? [15.785989492351684]
This paper explores the zero-shot abilities of recent Large Language Models in assisting with the writing of literature reviews based on an abstract.
For retrieval, we introduce a novel two-step search strategy that first uses an LLM to extract meaningful keywords from the abstract of a paper.
In the generation phase, we propose a two-step approach that first outlines a plan for the review and then executes steps in the plan to generate the actual review.
arXiv Detail & Related papers (2024-12-15T01:12:26Z) - Are We There Yet? Revealing the Risks of Utilizing Large Language Models in Scholarly Peer Review [66.73247554182376]
Large language models (LLMs) have led to their integration into peer review.
The unchecked adoption of LLMs poses significant risks to the integrity of the peer review system.
We show that manipulating 5% of the reviews could potentially cause 12% of the papers to lose their position in the top 30% rankings.
arXiv Detail & Related papers (2024-12-02T16:55:03Z) - Usefulness of LLMs as an Author Checklist Assistant for Scientific Papers: NeurIPS'24 Experiment [59.09144776166979]
Large language models (LLMs) represent a promising, but controversial, tool in aiding scientific peer review.
This study evaluates the usefulness of LLMs in a conference setting as a tool for vetting paper submissions against submission standards.
arXiv Detail & Related papers (2024-11-05T18:58:00Z) - From Test-Taking to Test-Making: Examining LLM Authoring of Commonsense Assessment Items [0.18416014644193068]
We consider LLMs as authors of commonsense assessment items.
We prompt LLMs to generate items in the style of a prominent benchmark for commonsense reasoning.
We find that LLMs that succeed in answering the original COPA benchmark are also more successful in authoring their own items.
arXiv Detail & Related papers (2024-10-18T22:42:23Z) - The LLM Effect: Are Humans Truly Using LLMs, or Are They Being Influenced By Them Instead? [60.01746782465275]
Large Language Models (LLMs) have shown capabilities close to human performance in various analytical tasks.
This paper investigates the efficiency and accuracy of LLMs in specialized tasks through a structured user study focusing on Human-LLM partnership.
arXiv Detail & Related papers (2024-10-07T02:30:18Z) - LLMs as Meta-Reviewers' Assistants: A Case Study [4.345138609587135]
Large Language Models (LLMs) can be used to generate a controlled multi-perspective summary (MPS) of experts opinions.
This paper performs a case study with three popular LLMs, i.e., GPT-3.5, LLaMA2, and PaLM2, to assist meta-reviewers in better comprehending experts perspectives.
arXiv Detail & Related papers (2024-02-23T20:14:16Z) - Can LLMs Grade Short-Answer Reading Comprehension Questions : An Empirical Study with a Novel Dataset [0.0]
This paper investigates the potential for the newest version of Large Language Models (LLMs) to be used in short answer questions for formative assessments.
It introduces a novel dataset of short answer reading comprehension questions, drawn from a set of reading assessments conducted with over 150 students in Ghana.
The paper empirically evaluates how well various configurations of generative LLMs grade student short answer responses compared to expert human raters.
arXiv Detail & Related papers (2023-10-26T17:05:40Z) - Aligning Large Language Models with Human: A Survey [53.6014921995006]
Large Language Models (LLMs) trained on extensive textual corpora have emerged as leading solutions for a broad array of Natural Language Processing (NLP) tasks.
Despite their notable performance, these models are prone to certain limitations such as misunderstanding human instructions, generating potentially biased content, or factually incorrect information.
This survey presents a comprehensive overview of these alignment technologies, including the following aspects.
arXiv Detail & Related papers (2023-07-24T17:44:58Z) - Sentiment Analysis in the Era of Large Language Models: A Reality Check [69.97942065617664]
This paper investigates the capabilities of large language models (LLMs) in performing various sentiment analysis tasks.
We evaluate performance across 13 tasks on 26 datasets and compare the results against small language models (SLMs) trained on domain-specific datasets.
arXiv Detail & Related papers (2023-05-24T10:45:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.