Conditional Diffusion-Flow models for generating 3D cosmic density fields: applications to f(R) cosmologies
- URL: http://arxiv.org/abs/2502.17087v1
- Date: Mon, 24 Feb 2025 12:06:23 GMT
- Title: Conditional Diffusion-Flow models for generating 3D cosmic density fields: applications to f(R) cosmologies
- Authors: Julieth Katherine Riveros, Paola Saavedra, Hector J. Hortua, Jorge Enrique Garcia-Farieta, Ivan Olier,
- Abstract summary: Next-generation galaxy surveys promise unprecedented precision in testing gravity at cosmological scales.<n>We explore conditional generative modelling to create 3D dark matter density fields via score-based (diffusion) and flow-based methods.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Next-generation galaxy surveys promise unprecedented precision in testing gravity at cosmological scales. However, realising this potential requires accurately modelling the non-linear cosmic web. We address this challenge by exploring conditional generative modelling to create 3D dark matter density fields via score-based (diffusion) and flow-based methods. Our results demonstrate the power of diffusion models to accurately reproduce the matter power spectra and bispectra, even for unseen configurations. They also offer a significant speed-up with slightly reduced accuracy, when flow-based reconstructing the probability distribution function, but they struggle with higher-order statistics. To improve conditional generation, we introduce a novel multi-output model to develop feature representations of the cosmological parameters. Our findings offer a powerful tool for exploring deviations from standard gravity, combining high precision with reduced computational cost, thus paving the way for more comprehensive and efficient cosmological analyses
Related papers
- Towards Unified Latent Space for 3D Molecular Latent Diffusion Modeling [80.59215359958934]
3D molecule generation is crucial for drug discovery and material science.
Existing approaches typically maintain separate latent spaces for invariant and equivariant modalities.
We propose a multi-modal VAE that compresses 3D molecules into latent sequences from a unified latent space.
arXiv Detail & Related papers (2025-03-19T08:56:13Z) - Learning the Universe: Learning to Optimize Cosmic Initial Conditions with Non-Differentiable Structure Formation Models [0.0]
We introduce Learning the Universe by Learning to Optimize (LULO) for reconstructing the 3D cosmic initial conditions.
LULO is a gradient-free framework for reconstructing the 3D cosmic initial conditions.
We demonstrate the method by accurately reconstructing initial conditions from $M_200mathrmc$ halos identified in a dark matter-only $N$-body simulation.
arXiv Detail & Related papers (2025-02-18T19:17:01Z) - Geometric Trajectory Diffusion Models [58.853975433383326]
Generative models have shown great promise in generating 3D geometric systems.
Existing approaches only operate on static structures, neglecting the fact that physical systems are always dynamic in nature.
We propose geometric trajectory diffusion models (GeoTDM), the first diffusion model for modeling the temporal distribution of 3D geometric trajectories.
arXiv Detail & Related papers (2024-10-16T20:36:41Z) - CHARM: Creating Halos with Auto-Regressive Multi-stage networks [1.6987257996124416]
CHARM is a novel method for creating mock halo catalogs.
We show that the mock halo catalogs and painted galaxy catalogs have the same statistical properties as obtained from $N$-body simulations in both real space and redshift space.
arXiv Detail & Related papers (2024-09-13T18:00:06Z) - GaussianCube: A Structured and Explicit Radiance Representation for 3D Generative Modeling [55.05713977022407]
We introduce a radiance representation that is both structured and fully explicit and thus greatly facilitates 3D generative modeling.
We derive GaussianCube by first using a novel densification-constrained Gaussian fitting algorithm, which yields high-accuracy fitting.
Experiments conducted on unconditional and class-conditioned object generation, digital avatar creation, and text-to-3D all show that our model synthesis achieves state-of-the-art generation results.
arXiv Detail & Related papers (2024-03-28T17:59:50Z) - A point cloud approach to generative modeling for galaxy surveys at the field level [0.431625343223275]
We introduce a diffusion-based generative model to describe the distribution of galaxies in our Universe.<n>We demonstrate a first application to massive dark matter haloes in the Quijote simulation suite.<n>This approach can be extended to enable a comprehensive analysis of cosmological data.
arXiv Detail & Related papers (2023-11-28T19:00:00Z) - Stochastic Super-resolution of Cosmological Simulations with Denoising Diffusion Models [3.2771631221674333]
We introduce denoising diffusion models as a powerful generative model for super-resolving cosmic large-scale structure predictions.
We demonstrate that our model not only produces convincing super-resolution images and power spectra consistent at the percent level, but is also able to reproduce the diversity of small-scale features consistent with a given low-resolution simulation.
arXiv Detail & Related papers (2023-10-10T18:32:11Z) - Synthetic Lagrangian Turbulence by Generative Diffusion Models [1.7810134788247751]
We propose a machine learning approach to generate single-particle trajectories in three-dimensional turbulence at high Reynolds numbers.
Our model demonstrates the ability to reproduce most statistical benchmarks across time scales.
Surprisingly, the model exhibits strong generalizability for extreme events, producing events of higher intensity and rarity that still match the realistic statistics.
arXiv Detail & Related papers (2023-07-17T14:42:32Z) - Geometric Latent Diffusion Models for 3D Molecule Generation [172.15028281732737]
Generative models, especially diffusion models (DMs), have achieved promising results for generating feature-rich geometries.
We propose a novel and principled method for 3D molecule generation named Geometric Latent Diffusion Models (GeoLDM)
arXiv Detail & Related papers (2023-05-02T01:07:22Z) - Score-based Diffusion Models in Function Space [137.70916238028306]
Diffusion models have recently emerged as a powerful framework for generative modeling.<n>This work introduces a mathematically rigorous framework called Denoising Diffusion Operators (DDOs) for training diffusion models in function space.<n>We show that the corresponding discretized algorithm generates accurate samples at a fixed cost independent of the data resolution.
arXiv Detail & Related papers (2023-02-14T23:50:53Z) - Fast and realistic large-scale structure from machine-learning-augmented
random field simulations [0.0]
We train a machine learning model to transform projected lognormal dark matter density fields to more realistic dark matter maps.
We demonstrate the performance of our model comparing various statistical tests with different field resolutions, redshifts and cosmological parameters.
arXiv Detail & Related papers (2022-05-16T18:00:01Z) - Physics-informed CoKriging model of a redox flow battery [68.8204255655161]
Redox flow batteries (RFBs) offer the capability to store large amounts of energy cheaply and efficiently.
There is a need for fast and accurate models of the charge-discharge curve of a RFB to potentially improve the battery capacity and performance.
We develop a multifidelity model for predicting the charge-discharge curve of a RFB.
arXiv Detail & Related papers (2021-06-17T00:49:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.