論文の概要: CoT-UQ: Improving Response-wise Uncertainty Quantification in LLMs with Chain-of-Thought
- arxiv url: http://arxiv.org/abs/2502.17214v1
- Date: Mon, 24 Feb 2025 14:48:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:59:37.455092
- Title: CoT-UQ: Improving Response-wise Uncertainty Quantification in LLMs with Chain-of-Thought
- Title(参考訳): CoT-UQ:LLMの応答性不確実性定量化の改善
- Authors: Boxuan Zhang, Ruqi Zhang,
- Abstract要約: 大規模言語モデル(LLM)は多くのタスクで優れるが、生成された応答の不確かさを正確に定量化するのに苦労する。
LLMの既存の不確実性定量化(UQ)法は、主に応答性よりも即時的であり、高い計算コストを発生させる。
応答型UQフレームワークであるCoT-UQを提案する。このフレームワークは,Chain-of-Thought (CoT) を通じて LLM 固有の推論機能を UQ プロセスに統合する。
- 参考スコア(独自算出の注目度): 10.166370877826486
- License:
- Abstract: Large language models (LLMs) excel in many tasks but struggle to accurately quantify uncertainty in their generated responses. This limitation makes it challenging to detect misinformation and ensure reliable decision-making. Existing uncertainty quantification (UQ) methods for LLMs are primarily prompt-wise rather than response-wise, often requiring multiple response samples, which incurs high computational costs. Moreover, LLMs have been shown to be overconfident, particularly when using reasoning steps to derive their answers. In this work, we propose CoT-UQ, a response-wise UQ framework that integrates LLMs' inherent reasoning capabilities through Chain-of-Thought (CoT) into the UQ process. CoT-UQ captures critical information during inference by extracting keywords from each reasoning step and assessing their importance to the final answer. This key reasoning information is then aggregated to produce a final uncertainty estimate. We conduct extensive experiments based on LLaMA Family with model sizes varying from 8B to 13B across logical and mathematical reasoning tasks. Experimental results demonstrate that CoT-UQ significantly outperforms existing UQ methods, achieving an average improvement of 5.9% AUROC compared to current UQ methods. The code is available at: https://github.com/ZBox1005/CoT-UQ.
- Abstract(参考訳): 大規模言語モデル(LLM)は多くのタスクで優れるが、生成された応答の不確かさを正確に定量化するのに苦労する。
この制限により、誤った情報を検出し、信頼できる意思決定を保証することは困難になる。
LLMの既存の不確実性定量化(UQ)法は、主に応答性よりも即時的であり、しばしば複数の応答サンプルを必要とするため、高い計算コストがかかる。
さらに、LSMは、特に推論ステップを使用して答えを導出する場合、過信であることが示されている。
本研究では,LLMs固有の推論機能を,Chain-of-Thought (CoT) を通じてUQプロセスに統合する応答型UQフレームワークであるCoT-UQを提案する。
CoT-UQは、各推論ステップからキーワードを抽出し、その重要度を最終回答に評価することで、推論中に重要な情報をキャプチャする。
この重要な推論情報は、最終的な不確実性推定を生成するために集約される。
論理的および数学的推論タスクにおいて,モデルサイズが8Bから13Bに変化したLLaMAファミリに基づく広範囲な実験を行った。
実験の結果,CoT-UQは既存のUQ法よりも有意に優れており,現在のUQ法と比較して平均5.9%のAUROC改善を実現していることがわかった。
コードは、https://github.com/ZBox1005/CoT-UQ.comで入手できる。
関連論文リスト
- Token-Level Density-Based Uncertainty Quantification Methods for Eliciting Truthfulness of Large Language Models [76.17975723711886]
不確実性定量化(英: Uncertainty Quantification、UQ)は、大規模言語モデル(LLM)から真正性を求めるための顕著なアプローチである。
本研究では,テキスト生成のために,分類タスクのUQ技術であるMahalanobis Distance (MD)を適用した。
提案手法は,複数レイヤのLCMからトークン埋め込みを抽出し,各トークンのMDスコアを計算し,これらの特徴を訓練した線形回帰を用いてロバストな不確実性スコアを提供する。
論文 参考訳(メタデータ) (2025-02-20T10:25:13Z) - Improving LLM Reasoning through Scaling Inference Computation with Collaborative Verification [52.095460362197336]
大規模言語モデル(LLM)は一貫性と正確な推論に苦しむ。
LLMは、主に正しいソリューションに基づいて訓練され、エラーを検出して学習する能力を減らす。
本稿では,CoT(Chain-of-Thought)とPoT(Program-of-Thought)を組み合わせた新しい協調手法を提案する。
論文 参考訳(メタデータ) (2024-10-05T05:21:48Z) - Benchmarking Uncertainty Quantification Methods for Large Language Models with LM-Polygraph [83.90988015005934]
不確実性定量化は機械学習アプリケーションにおいて重要な要素である。
最新のUQベースラインの集合を実装した新しいベンチマークを導入する。
我々は、11タスクにわたるUQと正規化技術に関する大規模な実証的研究を行い、最も効果的なアプローチを特定した。
論文 参考訳(メタデータ) (2024-06-21T20:06:31Z) - LUQ: Long-text Uncertainty Quantification for LLMs [29.987010627250527]
大規模言語モデル(LLM)は、非現実的なコンテンツを生成する傾向がある。
不確実性定量化(UQ)は、モデルの生成に対する信頼性の理解を高める上で重要である。
我々は,複数のモデルからの応答をアンサンブルし,最も低い不確実性で応答を選択するTextscLuq-Ensembleを提案する。
論文 参考訳(メタデータ) (2024-03-29T16:49:24Z) - Can multiple-choice questions really be useful in detecting the abilities of LLMs? [15.756543037102256]
大規模言語モデル(LLM)の評価には,MCQ(Multiple-choice Question)が広く用いられている。
課題と評価方法のミスアライメントは,MCQの有効性の思慮深い分析を必要とする。
質問応答(QA)データセットを中国語と英語の2言語で評価した。
論文 参考訳(メタデータ) (2024-03-26T14:43:48Z) - DQ-LoRe: Dual Queries with Low Rank Approximation Re-ranking for
In-Context Learning [66.85379279041128]
そこで本研究では,Dual Queries と Low-rank approximation Re- rank を利用して,文脈内学習のための例を自動選択するフレームワークを提案する。
DQ-LoRe は GPT-4 の自動選択において最先端の手法よりも優れ、92.5% から94.2% まで性能が向上した。
論文 参考訳(メタデータ) (2023-10-04T16:44:37Z) - Knowledge-Driven CoT: Exploring Faithful Reasoning in LLMs for
Knowledge-intensive Question Answering [17.672572064705445]
CoT(Chain-of-Thought)を備えた大規模言語モデル(LLM)は、様々な下流タスクにおいて顕著な推論能力を示している。
我々は、外部知識との相互作用を通じてCoTの推論トレースを検証・修正する、KD-CoT(Knowled-Driven Chain-of-Thought)というフレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-25T09:23:55Z) - LaGR-SEQ: Language-Guided Reinforcement Learning with Sample-Efficient
Querying [71.86163159193327]
大規模言語モデル(LLM)は、最近、テキストを介してコンテキスト対応の応答を提供するという、印象的な能力を実証した。
この能力は、パターン補完に関連するシーケンシャルな意思決定タスクにおいて、妥当なソリューションを予測するために使われる可能性がある。
第一強化学習(RL)エージェントによって部分的に完了したタスクに対する解を提案するために,LLMのこの予測能力を利用するLaGRを紹介した。
論文 参考訳(メタデータ) (2023-08-21T02:07:35Z) - T-SciQ: Teaching Multimodal Chain-of-Thought Reasoning via Mixed Large
Language Model Signals for Science Question Answering [59.63860993280275]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクにおいて例外的な性能を示した。
LLM信号を用いた科学質問応答の指導を目的とした,T-SciQと呼ばれる新しい手法を提案する。
提案手法は,ScienceQAベンチマークで96.18%の精度で,最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-05-05T11:56:30Z) - Active Prompting with Chain-of-Thought for Large Language Models [26.5029080638055]
本稿では,大規模言語モデルを異なるタスクに適応させる新しい手法であるActive-Promptを提案する。
不確実性に基づくアクティブラーニングの関連問題からアイデアを借用することにより、不確実性を特徴づける指標をいくつか導入する。
実験により,提案手法の優位性を実証し,8つの複雑な推論タスクの最先端化を図った。
論文 参考訳(メタデータ) (2023-02-23T18:58:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。