論文の概要: Unveiling Downstream Performance Scaling of LLMs: A Clustering-Based Perspective
- arxiv url: http://arxiv.org/abs/2502.17262v2
- Date: Fri, 23 May 2025 09:30:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-26 15:51:02.844506
- Title: Unveiling Downstream Performance Scaling of LLMs: A Clustering-Based Perspective
- Title(参考訳): LLMのダウンストリームパフォーマンススケーリングの展開:クラスタリングに基づく視点
- Authors: Chengyin Xu, Kaiyuan Chen, Xiao Li, Ke Shen, Chenggang Li,
- Abstract要約: 大規模言語モデル(LLM)トレーニングのエスカレートスケールとコストは、下流タスク性能の正確な事前トレーニング予測を必要とする。
現在の予測手法には精度と信頼性が欠けている。
本稿では,下流性能予測のためのクラスタリングオンディフルティ(COD)フレームワークを提案する。
- 参考スコア(独自算出の注目度): 5.09611816929943
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The escalating scale and cost of Large Language Models (LLMs) training necessitate accurate pre-training prediction of downstream task performance for efficient resource allocation. This is challenged by: 1) the emergence phenomenon, where metrics become meaningful only after extensive training, hindering prediction by smaller models; and 2) uneven task difficulty and inconsistent performance scaling patterns, leading to high metric variability. Current prediction methods lack accuracy and reliability. We propose a Clustering-On-Difficulty (COD) framework for downstream performance prediction. The COD framework clusters tasks by their difficulty scaling features, thereby establishing a more stable and predictable support subset through the exclusion of tasks exhibiting non-emergent behavior or irregular scaling. We adopt a performance scaling law to predict cluster-wise performance with theoretical support. Predictable subset performance acts as an intermediate predictor for the full evaluation set. We further derive a mapping function to accurately extrapolate the performance of the subset to the full set. Applied to an LLM with 70B parameters, COD achieved a 1.36% average prediction error across eight key LLM benchmarks, offering actionable insights for resource allocation and training monitoring of LLMs pretraining.
- Abstract(参考訳): LLM(Large Language Models)トレーニングのエスカレートスケールとコストは、効率的なリソース割り当てのために下流タスク性能の正確な事前トレーニング予測を必要とする。
これは次のように異議を唱える。
1) 大規模な訓練後のみ、より小さなモデルによる予測を妨げる指標が意味を持つ現象,及び
2) 不均一なタスクの難易度と不整合なパフォーマンススケーリングパターンは、高いメトリクスの変動をもたらす。
現在の予測手法には精度と信頼性が欠けている。
本稿では,下流性能予測のためのクラスタリングオンディフルティ(COD)フレームワークを提案する。
CODフレームワークは、スケーリングの困難さによってタスクをクラスタリングし、非創発的な振る舞いや不規則なスケーリングを示すタスクを除外することで、より安定的で予測可能なサポートサブセットを確立する。
クラスタレベルのパフォーマンスを理論的に予測するために,パフォーマンススケーリングの法則を採用する。
予測可能なサブセットのパフォーマンスは、完全な評価セットの中間予測器として機能する。
さらに、部分集合のパフォーマンスを全集合に正確に外挿する写像関数を導出する。
70Bパラメータを持つLLMに適用されたCODは、8つの主要なLLMベンチマークで平均1.36%の予測誤差を達成した。
関連論文リスト
- R-Sparse: Rank-Aware Activation Sparsity for Efficient LLM Inference [77.47238561728459]
R-スパース(R-Sparse)は、高度なLCMにおいて高い疎度を達成できる訓練不要なアクティベーション・スパシティ・アプローチである。
10種類のタスクにわたるLlama-2/3およびMistralモデルの実験は、R-Sparseが50%のモデルレベルの間隔で同等のパフォーマンスを達成することを示した。
論文 参考訳(メタデータ) (2025-04-28T03:30:32Z) - Can Pre-training Indicators Reliably Predict Fine-tuning Outcomes of LLMs? [32.04523360747506]
本研究では,501BパラメータLLM変種を用いて,系統的な事前学習構成を持つデータセットを構築した。
本稿では,事前学習から得られた新しい教師なしおよび教師なしのプロキシメトリクスを導入し,相対的な性能予測誤差率を50%以上削減する。
論文 参考訳(メタデータ) (2025-04-16T21:19:09Z) - Attention Pruning: Automated Fairness Repair of Language Models via Surrogate Simulated Annealing [14.114970711442512]
本稿では,大規模言語モデル (LLM) におけるアテンションヘッドに対するアテンション・プルーニング(Attention Pruning) を提案する。
我々の実験は、注意喚起によって最大40%の性別バイアスが減少し、最先端のバイアス緩和戦略よりも優れることを示した。
論文 参考訳(メタデータ) (2025-03-20T03:02:32Z) - The First Few Tokens Are All You Need: An Efficient and Effective Unsupervised Prefix Fine-Tuning Method for Reasoning Models [69.798277882245]
大規模言語モデルの推論効率を向上させるために,Unsupervised Prefix Fine-Tuning (UPFT)を導入した。
UPFTはラベル付きデータや徹底的なサンプリングの必要性を取り除く。
実験の結果,UPFTは教師付き手法の性能と一致していることがわかった。
論文 参考訳(メタデータ) (2025-03-04T18:56:03Z) - The Journey Matters: Average Parameter Count over Pre-training Unifies Sparse and Dense Scaling Laws [51.608402959163925]
本稿では,大規模言語モデルに対する最適スパース事前学習構成の体系的検討を行う。
総トレーニング計算の25%でプルーニングを開始し、75%で終了すると、ほぼ最適の最終評価損失が得られることがわかった。
本稿では,事前学習よりも平均パラメータ数を使用するように,チンチラスケーリング法を修正した新しいスケーリング法を提案する。
論文 参考訳(メタデータ) (2025-01-21T20:23:22Z) - Scaling Laws for Predicting Downstream Performance in LLMs [75.28559015477137]
この研究は、性能評価のためのより効率的な指標として、事前学習損失に焦点を当てている。
我々は、データソース間のFLOPに基づいて、ドメイン固有の事前学習損失を予測するために、電力法解析関数を拡張した。
我々は2層ニューラルネットワークを用いて、複数のドメイン固有の損失と下流性能の非線形関係をモデル化する。
論文 参考訳(メタデータ) (2024-10-11T04:57:48Z) - Weak Supervision Performance Evaluation via Partial Identification [46.73061437177238]
Programmatic Weak Supervision (PWS) は、地上の真理ラベルに直接アクセスすることなく、教師付きモデルトレーニングを可能にする。
本稿では,モデル評価を部分的同定問題としてフレーミングすることで,この問題に対処する新しい手法を提案する。
提案手法は,従来の弱監督評価手法において,ラベル付きデータを必要とせず,重要な指標に信頼性のあるバウンダリを導出する。
論文 参考訳(メタデータ) (2023-12-07T07:15:11Z) - Model-Agnostic Multitask Fine-tuning for Few-shot Vision-Language
Transfer Learning [59.38343286807997]
未知タスクの視覚言語モデルのためのモデル非依存型マルチタスクファインチューニング(MAMF)を提案する。
モデルに依存しないメタラーニング(MAML)と比較して、MAMFは二段階最適化を捨て、一階勾配のみを使用する。
MAMFは5つのベンチマークデータセット上で、数ショットの転送学習において古典的な微調整法よりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-03-09T17:26:53Z) - FORML: Learning to Reweight Data for Fairness [2.105564340986074]
メタラーニング(FORML)によるフェアネス最適化リヘアリングについて紹介する。
FORMLは、トレーニングサンプル重量とニューラルネットワークのパラメータを共同最適化することで、公正性の制約と精度のバランスを取る。
また,FORMLは,既存の最先端再重み付け手法に比べて,画像分類タスクで約1%,顔予測タスクで約5%向上することを示した。
論文 参考訳(メタデータ) (2022-02-03T17:36:07Z) - Counterfactual Maximum Likelihood Estimation for Training Deep Networks [83.44219640437657]
深層学習モデルは、予測的手がかりとして学習すべきでない急激な相関を学習する傾向がある。
本研究では,観測可能な共同設立者による相関関係の緩和を目的とした因果関係に基づくトレーニングフレームワークを提案する。
自然言語推論(NLI)と画像キャプションという2つの実世界の課題について実験を行った。
論文 参考訳(メタデータ) (2021-06-07T17:47:16Z) - An Information Bottleneck Approach for Controlling Conciseness in
Rationale Extraction [84.49035467829819]
我々は,情報ボトルネック(IB)の目的を最適化することで,このトレードオフをよりよく管理できることを示す。
我々の完全教師なしのアプローチは、文上のスパース二項マスクを予測する説明器と、抽出された合理性のみを考慮したエンドタスク予測器を共同で学習する。
論文 参考訳(メタデータ) (2020-05-01T23:26:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。