論文の概要: Experimental validation of UAV search and detection system in real wilderness environment
- arxiv url: http://arxiv.org/abs/2502.17372v1
- Date: Mon, 24 Feb 2025 17:53:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:58:46.137224
- Title: Experimental validation of UAV search and detection system in real wilderness environment
- Title(参考訳): 実地環境におけるUAV探索・検出システムの実験的検証
- Authors: Stella Dumenčić, Luka Lanča, Karlo Jakac, Stefan Ivić,
- Abstract要約: 地中海カルスト環境下での無人無人UAV探索の設計と実験を行った。
UAVは、既知の確率密度と検出関数に従って、Heath equation-driven Area Cover (HEDAC) ergodic control法を用いて誘導される。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Search and rescue (SAR) missions require reliable search methods to locate survivors, especially in challenging or inaccessible environments. This is why introducing unmanned aerial vehicles (UAVs) can be of great help to enhance the efficiency of SAR missions while simultaneously increasing the safety of everyone involved in the mission. Motivated by this, we design and experiment with autonomous UAV search for humans in a Mediterranean karst environment. The UAVs are directed using Heat equation-driven area coverage (HEDAC) ergodic control method according to known probability density and detection function. The implemented sensing framework consists of a probabilistic search model, motion control system, and computer vision object detection. It enables calculation of the probability of the target being detected in the SAR mission, and this paper focuses on experimental validation of proposed probabilistic framework and UAV control. The uniform probability density to ensure the even probability of finding the targets in the desired search area is achieved by assigning suitably thought-out tasks to 78 volunteers. The detection model is based on YOLO and trained with a previously collected ortho-photo image database. The experimental search is carefully planned and conducted, while as many parameters as possible are recorded. The thorough analysis consists of the motion control system, object detection, and the search validation. The assessment of the detection and search performance provides strong indication that the designed detection model in the UAV control algorithm is aligned with real-world results.
- Abstract(参考訳): 捜索救助(SAR)任務は、特に難易度や到達不能な環境において、生存者を見つけるための信頼性の高い捜索方法を必要とする。
無人航空機(UAV)の導入は、SARミッションの効率を高めると同時に、ミッションに関わるすべての人の安全を高めるのに非常に役立ちます。
そこで我々は,地中海カルスト環境下での無人無人UAV探索の設計と実験を行った。
UAVは、既知の確率密度と検出関数に従って、Heath equation-driven Area Cover (HEDAC) ergodic control法を用いて誘導される。
実装されたセンシングフレームワークは、確率的探索モデル、モーションコントロールシステム、コンピュータビジョンオブジェクト検出で構成される。
本研究は,SARミッションで検出された目標の確率を計算し,提案した確率的フレームワークとUAV制御の実験的検証に焦点を当てる。
適切な思考課題を78名のボランティアに割り当てることにより、所望の探索領域における目標を見つける偶発確率を確実にする均一確率密度を実現する。
検出モデルはYOLOに基づいており、以前に収集した正光画像データベースでトレーニングされている。
実験的な探索は慎重に計画・実施され、可能な限り多くのパラメータが記録される。
徹底的な分析は、モーションコントロールシステム、オブジェクト検出、検索バリデーションから構成される。
検出および探索性能の評価は,UAV制御アルゴリズムにおける設計された検出モデルが実世界の結果と一致していることを示す。
関連論文リスト
- Seamless Detection: Unifying Salient Object Detection and Camouflaged Object Detection [73.85890512959861]
本稿では,SOD(Salient Object Detection)とCOD(Camouflaged Object Detection)を統合化するためのタスク非依存フレームワークを提案する。
我々は、間隔層と大域的コンテキストを含む単純で効果的なコンテキストデコーダを設計し、67fpsの推論速度を実現する。
公開SODデータセットとCODデータセットの実験は、教師なし設定と教師なし設定の両方において、提案したフレームワークの優位性を実証している。
論文 参考訳(メタデータ) (2024-12-22T03:25:43Z) - Unsupervised UAV 3D Trajectories Estimation with Sparse Point Clouds [18.48877348628721]
本稿では,時空間シーケンス処理を用いたコスト効率,教師なしUAV検出手法を提案する。
CVPR 2024 UG2+ Challengeの4位にランクインした。
我々は、研究コミュニティ.com/lianghanfang/UnLiDAR-UAV-Estのすべての設計、コード、サンプルデータをオープンソース化する予定です。
論文 参考訳(メタデータ) (2024-12-17T09:30:31Z) - NEUSIS: A Compositional Neuro-Symbolic Framework for Autonomous Perception, Reasoning, and Planning in Complex UAV Search Missions [41.87952703626145]
現実的なシナリオにおけるUAV探索とナビゲーションの解釈を目的とした合成ニューロシンボリックシステムであるNEUSISを提案する。
NEUSISは、ニューロシンボリックな視覚知覚、推論、接地(GRiD)を統合して生の感覚入力を処理し、環境表現のための確率論的世界モデルを維持し、効率的な経路計画のために階層的計画コンポーネント(SNaC)を使用する。
AirSimとUnreal Engineを用いた都市探索のシミュレーション実験の結果、NEUSISは成功率、検索効率において最先端(SOTA)ビジョン言語モデルとSOTA検索計画モデルより優れていることが示された。
論文 参考訳(メタデータ) (2024-09-16T11:42:15Z) - UAV-Based Human Body Detector Selection and Fusion for Geolocated Saliency Map Generation [0.2499907423888049]
無人航空機(UAV)を用いた探索・救助など多くの応用分野において、ソフトリアルタイムの異なるクラスの物体を確実に検出・位置決めする問題は不可欠である。
本研究は、システムコンテキストの視覚に基づく検出器の選択、割り当て、実行の相補的な問題に対処する。
検出結果は,新しいセンサモデルを利用して,正と負の両方の観測を視覚ベースで検出する,有意な位置の地図を構築する手法を用いて融合される。
論文 参考訳(メタデータ) (2024-08-29T13:00:37Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
本稿では,LSKNetのバックボーンをDiffusionDetヘッドに統合したオブジェクト検出モデルの詳細な評価を行う。
提案手法は平均精度(MAP)を約45.7%向上させる。
この進歩は、提案された修正の有効性を強調し、航空画像解析の新しいベンチマークを設定する。
論文 参考訳(メタデータ) (2023-11-21T19:49:13Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
スモークとダストは、搭載された知覚システムに依存するため、あらゆる移動ロボットプラットフォームの性能に影響を与える。
本稿では,重みと空間情報に基づく新しいモジュラー計算フィルタを提案する。
論文 参考訳(メタデータ) (2023-08-14T16:48:57Z) - Rethinking Drone-Based Search and Rescue with Aerial Person Detection [79.76669658740902]
航空ドローンの映像の視覚検査は、現在土地捜索救助(SAR)活動に不可欠な部分である。
本稿では,この空中人物検出(APD)タスクを自動化するための新しいディープラーニングアルゴリズムを提案する。
本稿では,Aerial Inspection RetinaNet (AIR) アルゴリズムについて述べる。
論文 参考訳(メタデータ) (2021-11-17T21:48:31Z) - A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments [68.31522961125589]
複雑なGPSを用いた複雑な環境において,UAVのチームが協調して目標を探索し,発見するための枠組みを提案する。
UAVのチームは自律的にナビゲートし、探索し、検出し、既知の地図で散らばった環境でターゲットを見つける。
その結果, 提案方式は, 時間的コスト, 調査対象地域の割合, 捜索・救助ミッションの成功率などの面で改善されていることがわかった。
論文 参考訳(メタデータ) (2021-07-19T12:54:04Z) - AutoOD: Automated Outlier Detection via Curiosity-guided Search and
Self-imitation Learning [72.99415402575886]
外乱検出は重要なデータマイニングの課題であり、多くの実用的応用がある。
本稿では,最適なニューラルネットワークモデルを探すことを目的とした自動外乱検出フレームワークであるAutoODを提案する。
さまざまな実世界のベンチマークデータセットに対する実験結果から、AutoODが特定したディープモデルが最高のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2020-06-19T18:57:51Z) - Reinforcement Learning for UAV Autonomous Navigation, Mapping and Target
Detection [36.79380276028116]
本研究では,無人航空機(UAV)に低高度レーダーを装備し,未知の環境下での飛行における共同検出・マッピング・ナビゲーション問題について検討する。
目的は、マッピング精度を最大化する目的で軌道を最適化することであり、目標検出の観点からは、測定が不十分な領域を避けることである。
論文 参考訳(メタデータ) (2020-05-05T20:39:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。